Author Topic: Arbitrary Precision Multiplication (z80)  (Read 2475 times)

0 Members and 1 Guest are viewing this topic.

Offline Xeda112358

  • they/them
  • Moderator
  • LV12 Extreme Poster (Next: 5000)
  • ************
  • Posts: 4704
  • Rating: +719/-6
  • Calc-u-lator, do doo doo do do do.
    • View Profile
Arbitrary Precision Multiplication (z80)
« on: September 17, 2012, 09:22:38 am »
In case anybody else wanted some arbitrary precision multiplication, here is a routine :)
Code: [Select]
;===============================================================
AP_Mul_AP:
;===============================================================
;Inputs:
;     HL points to the first number (little-endian, size prefix 2 bytes)
;     DE points to the second number (little-endian, size prefix 2 bytes)
;     BC points to the output location
;Output:
;     The RAM at HL contains the product (little-endian with
;     size prefix). Size is adjusted so there won't be zeroes
;     at the end.
;Notes:
;     This will erase bytes of RAM at (HL) equal to the
;     size of the first number plus the size of the second.
;     So if you use saveSScreen:
;         First number uses 2+M bytes
;        Second number uses 2+N bytes
;        Output number uses 2+M+N bytes
;     At most, 2+N+2+M+2+M+N=768.
;        2+N+2+M+2+M+N = 768
;              6+2M+2N = 768
;               2(M+N) = 762
;                  M+N = 381
;     In otherwords, you can multiply two, 190 byte numbers. In
;     Decimal, this comes out to roughly two 457 digit numbers
;     to get up to 915 digit number. It requires 14952 bytes of
;     RAM to use two numbers >9000 digits
;===============================================================
     di
;First, we get the size
     ld (output),bc   ;4 bytes, save the output location
     ld c,(hl)
     inc hl
     ld b,(hl)
     inc hl
     ld (Num1Loc),hl  ;3 bytes, save the location of the first number
     ld (Num1Size),bc ;4 bytes, save the size
     ex de,hl
     ld e,(hl)
     inc hl
     ld d,(hl)
     add hl,de
     ld (Num2Loc),hl  ;3 bytes, save the location
     ld (Num2Size),de ;4 bytes, save the size
     ex de,hl
     add hl,bc        ;size of the output RAM
;Now we clear out the bytes for the output
     ld b,h
     ld c,l
     ld hl,(output)
     ld (hl),c
     inc hl
     ld (hl),b
     inc hl
     ld (output),hl
     ld (Num3Size),bc
     xor a
       ld (hl),a
       cpi
       jp pe,$-3
;Now we start multiplying stuff
;We need to do:
;     hl=(Num2Loc)
;     de=(Num1Loc)
;     ix=(output)
;     bc=(Num2Size)
;(hl)_Times_(de)_To_(ix)
   exx
   ld bc,(Num3Size)
   exx
   ld bc,(Num2Size)
;   ld hl,(Num2Loc)
   ex de,hl
Loop1:
   push bc
   ld b,8
Loop2:
;===============================================================
;   rl (output)
;===============================================================
     exx
     ld hl,(output)
     ld d,b
     ld e,c
     dec de
     inc d
     inc e
     or a
       rl (hl)
       inc hl
       dec e
       jr nz,$-4
       dec d
       jr nz,$-7
     exx
;===============================================================


   rlc (hl)
   jr nc,NoAdd
;add (output),(Num1Loc)
     exx
     ld de,(Num1Loc)
     push bc
     ld bc,(Num1Size)
     dec bc
     inc c
     inc b
     ld hl,(output)
     or a
AddLoop:
       ld a,(de)
       adc a,(hl)
       ld (hl),a
       inc hl
       inc de
       dec c
       jr nz,AddLoop
       dec b
       jr nz,AddLoop
       jr nc,$+3
       inc (hl)
     pop bc
     exx
NoAdd:
   djnz Loop2
   pop bc
   cpd
   jp pe,Loop1
   ld hl,(output)
   ld bc,(Num3Size)
   add hl,bc
   dec hl
   inc bc
   xor a
     cpd
     jp po,$+5
     jr z,$-5
   ld hl,(output)
   dec hl
   ld (hl),b
   dec hl
   ld (hl),c
   ret
I used this in a test app and wrote a routine to multiply two base 10 integers in Str1 and Str2 respectively (I had to convert the base 10 string to hex data, then multiply, then convert back to base 10). I then used this routine in BatLib to make the routine for base conversion that handles large numbers (hundreds of digits). Feel free to supply other routines or optimisations, too! (I know some of you will find some :P)