0 Members and 1 Guest are viewing this topic.
p_Cos: ld a,l add a,64 ld l,ap_Sin: ld a,l add a,a push af ld d,a ld h,a ld l,0 ld bc,037Fh__SinLoop: sla h sbc a,a xor d and c add a,l ld l,a rrc d srl c srl c djnz __SinLoop ld h,b pop af ret nc xor a sub l ret z ld l,a dec h ret ;This:; 34 bytes; 269 t-states min, else 282, else 294; avg. 76 t-states faster than Axe;Axe:; 27 bytes; 341+b t-states min, else 354, else 366
(0aaaaaaa^0bcdefg0)+(000bbbbb^000cdefg)+(00000ccc^00000def)^ is for XOR logic, + is regular integer addition modulo 256
#!/usr/bin/python3# This is ported from:# https://www.omnimaga.org/asm-language/sine-approximation-(z80)/# (Xeda112358 a.k.a. Zeda a.k.a. ZedaZ80)#from math import sindef sineb(x): """Approximates 128*sin(x*2*pi/256)""" a1 = int(x) a0 = a1 << 1 a2 = a1 >> 1 # iteration 1 if a1 & 64: l = ~a0 & 127 else: l = a0 & 127 # iteration 2 if a1 & 32: l += ~a1 & 31 else: l += a1 & 31 # iteration 3 if a1 & 16: l += ~a2 & 7 else: l += a2 & 7 # check if it needs to be negated if a1 & 128: return -l else: return l# Plot a graph of the approximation vs the actualfor x in range(0, 256, 2): y = sineb(x) z = int(sin(x*3.1415926535/128)*128) # translate and scale for "graphing" y += 128 z += 128 y >>= 1 z >>= 1 # "graph" # X - Approximation # O - Actual # 8 - used when the graphs overlap if y == z: print(" "*y + "8") elif y > z: print(" "*z + "X" + " "*(y-z-1) + "O") else: print(" "*y + "O" + " "*(z-y-1) + "X")