
Project.........BASIC ReCode
Program.........BatLib
Author..........Zeda Elnara (ThunderBolt)
E-mail..........xedaelnara@gmail.com
Size............
Language........English
Programming.....Assembly
Version.........2.00.50
Last Update.....15 March 2011

BASIC ReCode
BASIC ReCode was once a program of its own, but when I turned SpriteLib

into an App (now known as BatLib), I decided to merge the two projects. For a
while, I stopped working on BASIC ReCode, but after nine months of mostly
dormancy, I have picked it back up.

For those who do not know, BASIC ReCode (otherwise known as ReCode) is
an interpreted programming language that can be inserted into a BASIC program.
Like any language, grammar is very important. Since ReCode is an interpreted
language that uses BASIC tokens, it might be easy to confuse cognates, especially
when you are going from one language to the next. For example, a few years ago in
French class, one student was trying to say "I am very excited" and since he
didn't know the word for "excited" he assumed it was a cognate and so said "Je
suis tres exciter!"... let's just say that it does mean excited, just not in a G
rated way. Likewise, in ReCode, do not assume certain commands work the same as
they do in BASIC. For example, while Line(draws a line from one point to another
in BASIC, in ReCode it draws a rectangle from one point to another.

How to use
To begin a ReCode block, use the dim(40 command of BatLib. To end a ReCode
block, simply use the "Stop" token. The BASIC program will then pick back up.

Commands
Stop
 This ends a ReCode block
→
 This stores Ans to a ReCode var. For example, 3→A. Variables can be used to
replace numbers, so Pause B is valid. These do not change the BASIC variables.
!
The exclamation point is used to distinguish between a ReCode var and a BASIC
var. For example, to store to the BASIC real var B:
 :3→!B
And then to read the BASIC real var B and store it to the ReCode var B:
 :!B→B
ReCode vars are faster to use, by the way.
'
This is used to access more vars. For example, A' and A are two different vars.

"Strx
This is used to reference an OS string, such as Str1. Ans must be the number of
bytes to read. If Ans is 0, the whole string is used, instead. For example:
 :"EF4045C9→Str3
 :dim(40
 :0
 :AsmPrgm"Str3
 :Stop
Also, you can do some math on the string to get an offset into it. For example,
to read 3 bytes into a string, you would do "Str0+3
Ans
This swaps the primary and secondary Ans. To get the remainder of a division,
for example:
 :33/4→Q
 :Ans→R
Line(X,Width,Y,Height,Type
 This draws a rectangle on the graph screen.
The arguments follow the same syntax as the dim(29 command of BatLib. For
example, to draw a 5x5 inverted rectangle at (0,0):
 :Line(0,5,0,5,2
Pause xx
 This pauses for approximately xx/100 seconds. for example, Pause 333 would
make a delay of 3.33 seconds. 0 is interpreted as 65536.
Pause While xx
 If you put a "While " after the pause instead of a number, you can pause until
the statement after "While " is false. For that reason, you need to be careful
about what you input. An example of waiting until clear is pressed:
 :Pause While getKey≠15
You can quite literally read it as "Pause While getKey is not equal to 15"
Disp y,x,String
 This displays a string on the homescreen at the coordinates indicated.
Y is a value from 0 to 7
X is a value from 0 to 15
String is a string of ASCII data without quotes
 As an example, Disp 0,0,HELLO will display HELLO at the upper left corner.
AsmPrgm
 This lets you execute an assembly opcode from the address 86ECh. For example,
EF4045C9 is the opcode to clear the LCD. Using AsmPrgm, you can do
AsmPrgmEF4045C9 to execute the opcode.

Text(y,x,TokenString
 This displays a string of tokens (not ASCII) on the graph screen at the cursor
position. This uses the fixed width 4x6 BatLib font.
Y is a value from 0 to 58
X is a value from 0 to 23
TokenString is a string of tokens to display.
 As an example, Text(0,0,cos(ln(Hello)) will display the string
"cos(ln(Hello))" at the upper left corner of the graph screen.

This routine will wrap text to the next line or if it goes off the bottom of the
screen it wraps to the top.
*If you omit X and Y but you put a negative sign at the start of the screen, the
text is drawn to the last cursor position.
getKey
 This returns a value in Ans that reflects the current key press. This will
return an individual value for up to two key presses. For example:
 :getKey→K
IS>(x
If Ans is not 0, this will jump x lines forward
DS>(x
If Ans is not 0 this will execute the previous x lines again.

While xx
This works like the BASIC While command. As long as xx results in a non-zero
value, anything between While... End is executed. For example, this will keep
inverting the screen until Clear is pressed:
 :While getKey≠15
 :Fill(2
 :DispGraph
 :End
If xx
If xx is 0, the block is skipped. Here are a few examples:
 :3→A
 :If A=0
 :Disp 3,3,THIS GETS SKIPPED BECAUSE A=0 IS NOT TRUE
 :Disp 4,3,SO THE PARSER GOES TO THIS LINE AND EXECUTES IT
And another example:
 :3→A
 :If A=3
 :Then
 :Disp A,A,THIS GETS EXECUTED
 :Disp A+1,A,AS DOES THIS
 :End
 :Pause 33
DispGraph
This displays the graph screen. Useful if you have just displayed text or drawn
on the graph screen.

dim(
This executes a BatLib command. Be sure to include all syntaxes. Stringing
commands will not work and only simple commands should be used as ReCode does
not pass non-number values well.
Vertical x,Method
This draws a vertical line on the graph screen.
X is the X pixel coordinate to draw the line at.
Method is how to draw the line:
 0 draws a white line
 1 draws a black line
 2 draws an inverted line
Horizontal y,Method
This draws a horizontal line across the graph screen.
Y is the Y pixel coordinate to draw the line at.
Method is how to draw the line:
 0 draws a white line
 1 draws a black line
 2 draws an inverted line
Shade(xx
This sets the contrast to xx (use values 0 to 39). Normal is bout 24.

Fill(Method[,Value]
This will "fill" the graph screen using some method:
 0 clears the graph
 1 turns the graph black
 2 inverts the graph
 3 Draws vertical lines every other pixel (starting at pixel 1)
 4 Draws vertical lines every other pixel (starting at pixel 0)
 5 XORs the screen with vertical lines every other pixel (start=pixel 1)
 6 XORs the screen with vertical lines every other pixel (start=pixel 0)
 7 turns off pixels defined by Value. For example, Fill(7,1 will turn off
 every 8th pixel.
 8 turns on pixels defined by Value. For example, Fill(8,1 will turn on
 every 8th pixel.
 9 XORs pixels defined by Value. For example, Fill(9,1 will XOR every
 8th pixel.
 10 Overwrites pixels defined by Value. For example, Fill(10,1 will turn off
 7 pixels and the 8th pixel is turned on.
*For commands 7 through 10, you use the Value argument. You will need to play
with it, but if you understand binary and bytes, Value is an 8-bit value...

Return
This is a little complicated to explain, but it is a simple command. It has two
syntaxes. For example:
 Return→A
 OR
 ReturnA
The first one stores the current address to A and the second one jumps to
wherever A points to. As an example of its use:
 :64→B
 :Return→H ;This stores the address of the next line to H
 :dim(58,1,4 ;This shifts the graph screen down 1 pixel
 :DispGraph ;This shows the graph screen
 :B-1→B
 :If B ;This tests if B is 0
 :ReturnH ;This points the parser back to "dim(58,1,4"
This is faster than a Goto or DS>(or IS>(, but it isn't as versatile as Goto
and uses a few bytes more code than DS>(and IS>(
rand
This returns a random value from 0 to 65535. As a tip, to get randInt(0,x):
 :rand*rand/x
 :/x
 :Ans
Full
This puts the calc at 15MHz mode (if possible). If you have a number following
it, like Full2, you can perform these functions:
 Full0 puts the calc at 6MHz mode
 Full1 puts the calc at 15MHz mode
 Any other values toggle the mode
RecallPic xx
This will copy a picture to the graph screen. xx is a number from 0 to 255 and
the picture can be in archive.
0=Pic1
1=Pic2
...
8=Pic9
9=Pic0
And the rest are hacked pictures.
StorePic xx
This will store the graph screen to a picture. The picture is automatically
overwritten, even if it is in archive. Also, this captures the bottom row of
pixels.

Pt-On(HexData,Height,X,Y,Method
This is used to display a sprite on the graph screen.
HexData is a string of hexadecimal sprite data.
Height is the height of the sprite. Based on this, the width is automatically calculated.
X is the x-coordinate to draw the sprite at. Use 0 to 11
Y is the y pixel coordinate to draw the sprite at
Method is some form of logic:
 0-Overwrite
 1-AND
 2-XOR
 3-OR

Math Functions
These include:
+ this adds the following number to Ans.
- this subtracts the following number from Ans
* this multiplies the following number by Ans
/ this divides Ans by the following number. Only the integer part is returned.
(-) the negative symbol does the operation 65536-the following number
Logic
 and performs AND logic on two numbers
 or performs OR logic on two numbers
 xor performs XOR logic on two numbers
not(performs NOT logic on a numbers
= returns 1 if both numbers are equal, 0 otherwise
≠ returns 1 if both numbers are not equal, 0 otherwise
> returns 1 if the Ans is greater than the number, 0 otherwise
≥ returns 1 if the Ans is greater than or equal the number, 0 otherwise
< returns 1 if the Ans is less than the number, 0 otherwise
≤ returns 1 if the Ans is less than or equal to the number, 0 otherwise

Ans is the last computed value, so in other words, this:
 :3+2
Will store 5 in Ans as well as this:
 :3
 :+2

Pixel Commands
Pxl-On(will turn a pixel on at (y,x). Returns the previous state of the pixel.
Pxl-Off(will turn a pixel off at (y,x). Returns the previous state of the
pixel.
Pxl-Change(will toggle a pixel at (y,x). Returns the previous state of the
pixel.
pxl-Test(will return the state of the pixel. 0=off, 1=on.

Tips&Tricks
For the Disp command, if you supply Y and X arguments that are too large, the
mod value is taken (mod8 and mod16 respectively). For example, if you supply a Y
value of 8, it will be read as 0. If you supply a value of 10, it will be read
as 2.

Advanced Notes
To understand how the parser works, we will look at some examples:

 :337
When the parser comes across a number, it converts the 16-bit value and stores
it to 'Ans'. After reading this line, Ans is equal to 337.

 :Pause 337
When the parser reads the token for 'Pause', it then parses the 337 and uses
that as the argument. Since 337 was the parsed number, 337 is in Ans.

 :Pause Pause 337
In this case, the parser reads 'Pause' and then parses the next argument to find
Ans. It then reads Pause again and so it parses the next argument as 337. After
executing the second Pause, Ans is 337 and the first Pause executes.

This is a very important concept to optimizing ReCode. If you use the Disp
trick, for example, you can do Disp 2,Pause 33,HELLO and it will Pause for .33
seconds and then display "HELLO" at the cursor position (2,1). However, if you
do Pause Disp 2,33,HELLO it will display "HELLO" at (2,1) and then Pause for .33
seconds. This also explains how math works in ReCode. Math is interpreted from
right to left, so:
3+2*6-12/4+2
3+2*6-12/6
3+2*6-2
3+2*4
3+8
11

	BASIC ReCode
	How to use
	Commands
	Stop
	→
	!
	'
	"Strx
	Ans
	Line(X,Width,Y,Height,Type
	Pause xx
	Pause While xx
	Disp y,x,String
	AsmPrgm
	Text(y,x,TokenString
	getKey
	IS>(x
	DS>(x
	While xx
	If xx
	DispGraph
	dim(
	Vertical x,Method
	Horizontal y,Method
	Shade(xx
	Fill(Method[,Value]
	Return
	rand
	Full
	RecallPic xx
	StorePic xx
	Pt-On(HexData,Height,X,Y,Method
	HexData is a string of hexadecimal sprite data.
	Height is the height of the sprite. Based on this, the width is automatically calculated.
	X is the x-coordinate to draw the sprite at. Use 0 to 11
	Y is the y pixel coordinate to draw the sprite at
	Method is some form of logic:
	Math Functions
	Logic
	Pixel Commands

	Tips&Tricks
	Advanced Notes

