Author Topic: QuadDouble precision  (Read 3203 times)

0 Members and 1 Guest are viewing this topic.

Offline ZippyDee

  • LV8 Addict (Next: 1000)
  • ********
  • Posts: 729
  • Rating: +83/-8
  • Why not zoidberg?
    • View Profile
QuadDouble precision
« on: December 13, 2011, 06:59:47 pm »
I'm working on a project in which I'd like to use some very high precision numbers, but I want to avoid using Apfloat as much as possible because of its slow speed.

After looking around I found a DoubleDouble class, which is written to act as (almost) a Quad precision wrapper using two doubles. It has 106 bits of precision instead of the 113 bits that a real Quad data type would have, but that's fine for me.

But I'm still looking for something with even more precision if possible. I'm wondering how I might have a QuadDouble precision class using 4 doubles for precision, instead of only two. Does anyone know if something of this precision already exists, or how I would go about writing a QuadDouble class if it doesn't already?
There's something about Tuesday...


Pushpins 'n' stuff...


Offline jacobly

  • LV5 Advanced (Next: 300)
  • *****
  • Posts: 205
  • Rating: +161/-1
    • View Profile
Re: QuadDouble precision
« Reply #1 on: December 13, 2011, 07:00:24 pm »
java.math.BigDecimal!

Offline ZippyDee

  • LV8 Addict (Next: 1000)
  • ********
  • Posts: 729
  • Rating: +83/-8
  • Why not zoidberg?
    • View Profile
Re: QuadDouble precision
« Reply #2 on: December 13, 2011, 07:03:10 pm »
Again, BigDecimal and Apfloat are really slow because of their arbitrary precision calculations. A QuadDouble class would potentially be much faster if all the math is done correctly...I'm just not sure how to do all the math for it.

Here's the DoubleDouble class, if you want to take a look...I'm thinking all the math could just be converted to DoubleDouble math, but that might not be the best way to go...

Code: [Select]
package md.math;

import java.io.*;

/**
 * Immutable, extended-precision floating-point numbers
 * which maintain 106 bits (approximately 30 decimal digits) of precision.
 * <p>
 * A DoubleDouble uses a representation containing two double-precision values.
 * A number x is represented as a pair of doubles, x.hi and x.lo,
 * such that the number represented by x is x.hi + x.lo, where
 * <pre>
 *    |x.lo| <= 0.5*ulp(x.hi)
 * </pre>
 * and ulp(y) means "unit in the last place of y". 
 * The basic arithmetic operations are implemented using
 * convenient properties of IEEE-754 floating-point arithmetic.
 * <p>
 * The range of values which can be represented is the same as in IEEE-754. 
 * The precision of the representable numbers
 * is twice as great as IEEE-754 double precision.
 * <p>
 * The correctness of the arithmetic algorithms relies on operations
 * being performed with standard IEEE-754 double precision and rounding.
 * This is the Java standard arithmetic model, but for performance reasons
 * Java implementations are not
 * constrained to using this standard by default. 
 * Some processors (notably the Intel Pentium architecure) perform
 * floating point operations in (non-IEEE-754-standard) extended-precision.
 * A JVM implementation may choose to use the non-standard extended-precision
 * as its default arithmetic mode.
 * To prevent this from happening, this code uses the
 * Java <tt>strictfp</tt> modifier,
 * which forces all operations to take place in the standard IEEE-754 rounding model.
 * <p>
 * The API provides a value-oriented interface.  DoubleDouble values are
 * immutable; operations on them return new objects carrying the result
 * of the operation.  This provides a much simpler semantics for
 * writing DoubleDouble expressions, and Java memory management is efficient enough that
 * this imposes very little performance penalty.
 * <p>
 * This implementation uses algorithms originally designed variously by Knuth, Kahan, Dekker, and
 * Linnainmaa.  Douglas Priest developed the first C implementation of these techniques.
 * Other more recent C++ implementation are due to Keith M. Briggs and David Bailey et al.
 *
 * <h3>References</h3>
 * <ul>
 * <li>Priest, D., <i>Algorithms for Arbitrary Precision Floating Point Arithmetic</i>,
 * in P. Kornerup and D. Matula, Eds., Proc. 10th Symposium on Computer Arithmetic,
 * IEEE Computer Society Press, Los Alamitos, Calif., 1991.
 * <li>Yozo Hida, Xiaoye S. Li and David H. Bailey,
 * <i>Quad-Double Arithmetic: Algorithms, Implementation, and Application</i>,
 * manuscript, Oct 2000; Lawrence Berkeley National Laboratory Report BNL-46996.
 * <li>David Bailey, <i>High Precision Software Directory</i>;
 * <tt>http://crd.lbl.gov/~dhbailey/mpdist/index.html</tt>
 * </ul>
 *
 *
 * @author Martin Davis
 *
 */
public strictfp class DoubleDouble
implements Serializable, Comparable, Cloneable
{
/**
* The value nearest to the constant Pi.
*/
public static final DoubleDouble PI = new DoubleDouble(
3.141592653589793116e+00,
1.224646799147353207e-16);

/**
* The value nearest to the constant 2 * Pi.
*/
public static final DoubleDouble TWO_PI = new DoubleDouble(
6.283185307179586232e+00,
      2.449293598294706414e-16);

/**
* The value nearest to the constant Pi / 2.
*/
public static final DoubleDouble PI_2 = new DoubleDouble(
1.570796326794896558e+00,
      6.123233995736766036e-17);

/**
* The value nearest to the constant e (the natural logarithm base).
*/
public static final DoubleDouble E = new DoubleDouble(
2.718281828459045091e+00,
      1.445646891729250158e-16);

/**
* A value representing the result of an operation which does not return a valid number.
*/
public static final DoubleDouble NaN = new DoubleDouble(Double.NaN, Double.NaN);

/**
* The smallest representable relative difference between two {link @ DoubleDouble} values
*/
public static final double EPS = 1.23259516440783e-32;  /* = 2^-106 */

/**
* Converts the string argument to a DoubleDouble number.
*
* @param str a string containing a representation of a numeric value
* @return the extended precision version of the value
* @throws NumberFormatException if <tt>s</tt> is not a valid representation of a number
*/
public static DoubleDouble valueOf(String str)
throws NumberFormatException
{
return parse(str);
}

/**
* Converts the <tt>double</tt> argument to a DoubleDouble number.
*
* @param x a numeric value
* @return the extended precision version of the value
*/
public static DoubleDouble valueOf(double x) { return new DoubleDouble(x); }

/**
* The value to split a double-precision value on during multiplication
*/
private static final double SPLIT = 134217729.0D; // 2^27+1, for IEEE double

/**
* The high-order component of the double-double precision value.
*/
private double hi = 0.0;

/**
* The low-order component of the double-double precision value.
*/
private double lo = 0.0;

/**
* Creates a new DoubleDouble with value 0.0.
*/
public DoubleDouble()
{
init(0.0);
}

/**
* Creates a new DoubleDouble with value x.
*
* @param x the value to initialize
*/
public DoubleDouble(double x)
{
init(x);
}

/**
* Creates a new DoubleDouble with value (hi, lo).
*
* @param hi the high-order component
* @param lo the high-order component
*/
public DoubleDouble(double hi, double lo)
{
init(hi, lo);
}

/**
* Creates a new DoubleDouble with value equal to the argument.
*
* @param dd the value to initialize
*/
public DoubleDouble(DoubleDouble dd)
{
init(dd);
}

/**
* Creates a new DoubleDouble with value equal to the argument.
*
* @param str the value to initialize by
* @throws NumberFormatException if <tt>str</tt> is not a valid representation of a number
*/
public DoubleDouble(String str)
throws NumberFormatException
{
this(parse(str));
}

/**
* Creates and returns a copy of this value.
*
* @return a copy of this value
*/
public Object clone()
{
try {
return super.clone();
}
catch (CloneNotSupportedException ex) {
// should never reach here
return null;
}
}

private void init(double x)
{
init(x, 0.0);
}

private void init(double hi, double lo)
{
this.hi = hi;
this.lo = lo;
}

private void init(DoubleDouble dd)
{
init(dd.hi, dd.lo);
}

/*
double getHighComponent() { return hi; }

double getLowComponent() { return lo; }
*/

// Testing only - should not be public
/*
public void RENORM()
{
double s = hi + lo;
double err = lo - (s - hi);
hi = s;
lo = err;
}
*/

/**
* Returns a DoubleDouble whose value is <tt>(this + y)</tt>.
*
* @param y the addend
* @return <tt>(this + y)</tt>
*/
public DoubleDouble add(DoubleDouble y)
{
if (isNaN()) return this;
return (new DoubleDouble(this)).selfAdd(y);
}

/**
* Adds the argument to the value of <tt>this</tt>.
* To prevent altering constants,
* this method <b>must only</b> be used on values known to
* be newly created.
*
* @param y the addend
* @return <tt>this</tt>, with its value incremented by <tt>y</tt>
*/
private DoubleDouble selfAdd(DoubleDouble y)
{
double H, h, T, t, S, s, e, f;
  S = hi + y.hi;
  T = lo + y.lo;
  e = S - hi;
  f = T - lo;
  s = S-e;
  t = T-f;
  s = (y.hi-e)+(hi-s);
  t = (y.lo-f)+(lo-t);
  e = s+T; H = S+e; h = e+(S-H); e = t+h;
 
  double zhi = H + e;
  double zlo = e + (H - zhi);
  hi = zhi;
  lo = zlo;
 
  return this;
}

/*
// experimental
private DoubleDouble selfAdd(double yhi, double ylo)
{
double H, h, T, t, S, s, e, f;
  S = hi + yhi;
  T = lo + ylo;
  e = S - hi;
  f = T - lo;
  s = S-e;
  t = T-f;
  s = (yhi-e)+(hi-s);
  t = (ylo-f)+(lo-t);
  e = s+T; H = S+e; h = e+(S-H); e = t+h;
 
  double zhi = H + e;
  double zlo = e + (H - zhi);
  hi = zhi;
  lo = zlo;
 
  return this;
}
*/

/**
* Returns a DoubleDouble whose value is <tt>(this - y)</tt>.
*
* @param y the subtrahend
* @return <tt>(this - y)</tt>
*/
public DoubleDouble subtract(DoubleDouble y)
{
if (isNaN()) return this;
return add(y.negate());
}

/*
public DoubleDouble selfSubtract(DoubleDouble y)
{
if (isNaN()) return this;
return selfAdd(-y.hi, -y.lo);
}
*/

/**
* Returns a DoubleDouble whose value is <tt>-this</tt>.
*
* @return <tt>-this</tt>
*/
public DoubleDouble negate()
{
if (isNaN()) return this;
return new DoubleDouble(-hi, -lo);
}

/**
* Returns a DoubleDouble whose value is <tt>(this * y)</tt>.
*
* @param y the multiplicand
* @return <tt>(this * y)</tt>
*/
public DoubleDouble multiply(DoubleDouble y)
{
if (isNaN()) return this;
if (y.isNaN()) return y;
  return (new DoubleDouble(this)).selfMultiply(y);
}

/**
* Multiplies this by the argument, returning this.
* To prevent altering constants,
* this method <b>must only</b> be used on values known to
* be newly created.
*
* @param y a DoubleDouble value to multiply by
* @return this
*/
private DoubleDouble selfMultiply(DoubleDouble y)
{
  double hx, tx, hy, ty, C, c;
  C = SPLIT * hi; hx = C-hi; c = SPLIT * y.hi;
  hx = C-hx; tx = hi-hx; hy = c-y.hi;
  C = hi*y.hi; hy = c-hy; ty = y.hi-hy;
  c = ((((hx*hy-C)+hx*ty)+tx*hy)+tx*ty)+(hi*y.lo+lo*y.hi);
  double zhi = C+c; hx = C-zhi;
  double zlo = c+hx;
  hi = zhi;
  lo = zlo;
  return this;
}

/**
* Returns a DoubleDouble whose value is <tt>(this / y)</tt>.
*
* @param y the divisor
* @return <tt>(this / y)</tt>
*/
public DoubleDouble divide(DoubleDouble y)
{
  double hc, tc, hy, ty, C, c, U, u;
  C = hi/y.hi; c = SPLIT*C; hc =c-C;  u = SPLIT*y.hi; hc = c-hc;
  tc = C-hc; hy = u-y.hi; U = C * y.hi; hy = u-hy; ty = y.hi-hy;
  u = (((hc*hy-U)+hc*ty)+tc*hy)+tc*ty;
  c = ((((hi-U)-u)+lo)-C*y.lo)/y.hi;
  u = C+c;
 
  double zhi = u;
  double zlo = (C-u)+c;
  return new DoubleDouble(zhi, zlo);
}

/*

// experimental
public DoubleDouble selfDivide(DoubleDouble y)
{
  double hc, tc, hy, ty, C, c, U, u;
  C = hi/y.hi; c = SPLIT*C; hc =c-C;  u = SPLIT*y.hi; hc = c-hc;
  tc = C-hc; hy = u-y.hi; U = C * y.hi; hy = u-hy; ty = y.hi-hy;
  u = (((hc*hy-U)+hc*ty)+tc*hy)+tc*ty;
  c = ((((hi-U)-u)+lo)-C*y.lo)/y.hi;
  u = C+c;
 
  hi = u;
  lo = (C-u)+c;
  return this;
}
*/

/**
* Returns a DoubleDouble whose value is  <tt>1 / this</tt>.
*
* @return the reciprocal of this value
*/
public DoubleDouble reciprocal()
{
  double  hc, tc, hy, ty, C, c, U, u;
  C = 1.0/hi;
  c = SPLIT*C;
  hc =c-C; 
  u = SPLIT*hi;
  hc = c-hc; tc = C-hc; hy = u-hi; U = C*hi; hy = u-hy; ty = hi-hy;
  u = (((hc*hy-U)+hc*ty)+tc*hy)+tc*ty;
  c = ((((1.0-U)-u))-C*lo)/hi;
 
  double  zhi = C+c;
  double  zlo = (C-zhi)+c;
  return new DoubleDouble(zhi, zlo);
}

/**
* Returns the largest (closest to positive infinity)
* value that is not greater than the argument
* and is equal to a mathematical integer.
* Special cases:
* <ul>
* <li>If this value is NaN, returns NaN.
* </ul>
*
* @return the largest (closest to positive infinity)
* value that is not greater than the argument
* and is equal to a mathematical integer.
*/
public DoubleDouble floor()
{
if (isNaN()) return NaN;
  double fhi=Math.floor(hi);
  double flo = 0.0;
  // Hi is already integral.  Floor the low word
  if (fhi == hi) {
  flo = Math.floor(lo);
  }
  // do we need to renormalize here?
  return new DoubleDouble(fhi, flo);
}

/**
* Returns the smallest (closest to negative infinity) value
* that is not less than the argument and is equal to a mathematical integer.
* Special cases:
* <ul>
* <li>If this value is NaN, returns NaN.
* </ul>
*
* @return the smallest (closest to negative infinity) value
* that is not less than the argument and is equal to a mathematical integer.
*/
public DoubleDouble ceil()
{
if (isNaN()) return NaN;
  double fhi=Math.ceil(hi);
  double flo = 0.0;
  // Hi is already integral.  Ceil the low word
  if (fhi == hi) {
  flo = Math.ceil(lo);
  // do we need to renormalize here?
}
  return new DoubleDouble(fhi, flo);
}

/**
* Returns an integer indicating the sign of this value.
* <ul>
* <li>if this value is > 0, returns 1
* <li>if this value is < 0, returns -1
* <li>if this value is = 0, returns 0
* <li>if this value is NaN, returns 0
* </ul>
*
* @return an integer indicating the sign of this value
*/
public int signum()
{
if (isPositive()) return 1;
if (isNegative()) return -1;
return 0;
}

/**
* Rounds this value to the nearest integer.
* The value is rounded to an integer by adding 1/2 and taking the floor of the result.
* Special cases:
* <ul>
* <li>If this value is NaN, returns NaN.
* </ul>
*
* @return this value rounded to the nearest integer
*/
public DoubleDouble rint()
{
if (isNaN()) return this;
// may not be 100% correct
DoubleDouble plus5 = this.add(new DoubleDouble(0.5));
return plus5.floor();
}

/**
* Returns the integer which is largest in absolute value and not further
* from zero than this value. 
* Special cases:
* <ul>
* <li>If this value is NaN, returns NaN.
* </ul>

* @return the integer which is largest in absolute value and not further from zero than this value
*/
public DoubleDouble trunc()
{
if (isNaN()) return NaN;
if (isPositive())
return floor();
else
return ceil();
}

/**
* Returns the absolute value of this value.
* Special cases:
* <ul>
* <li>If this value is NaN, it is returned.
* </ul>
*
* @return the absolute value of this value
*/
public DoubleDouble abs()
{
if (isNaN()) return NaN;
if (isNegative())
return negate();
return new DoubleDouble(this);
}

/**
* Computes the square of this value.
*
* @return the square of this value.
*/
public DoubleDouble sqr()
{
return this.multiply(this);
}

/**
* Computes the positive square root of this value.
* If the number is NaN or negative, NaN is returned.
*
* @return the positive square root of this number.
* If the argument is NaN or less than zero, the result is NaN.
*/
public DoubleDouble sqrt()
{
  /* Strategy:  Use Karp's trick:  if x is an approximation
    to sqrt(a), then

       sqrt(a) = a*x + [a - (a*x)^2] * x / 2   (approx)

    The approximation is accurate to twice the accuracy of x.
    Also, the multiplication (a*x) and [-]*x can be done with
    only half the precision.
 */

if (isZero())
    return new DoubleDouble(0.0);

  if (isNegative()) {
    return NaN;
  }

  double x = 1.0 / Math.sqrt(hi);
  double ax = hi * x;
 
  DoubleDouble axdd = new DoubleDouble(ax);
  DoubleDouble diffSq = this.subtract(axdd.sqr());
  double d2 = diffSq.hi * (x * 0.5);
 
  return axdd.add(new DoubleDouble(d2));
}

/**
* Computes the value of this number raised to an integral power.
* Follows semantics of Java Math.pow as closely as possible.
*
* @param exp the integer exponent
* @return x raised to the integral power exp
*/
public DoubleDouble pow(int exp)
{
if (exp == 0.0)
return valueOf(1.0);

  DoubleDouble r = new DoubleDouble(this);
  DoubleDouble s = valueOf(1.0);
  int n = Math.abs(exp);

  if (n > 1) {
    /* Use binary exponentiation */
    while (n > 0) {
      if (n % 2 == 1) {
        s.selfMultiply(r);
      }
      n /= 2;
      if (n > 0)
        r = r.sqr();
    }
  } else {
    s = r;
  }

  /* Compute the reciprocal if n is negative. */
  if (exp < 0)
    return s.reciprocal();
  return s;
}

/*------------------------------------------------------------
*   Conversion Functions
*------------------------------------------------------------
*/

/**
* Converts this value to the nearest double-precision number.
*
* @return the nearest double-precision number to this value
*/
public double doubleValue()
{
return hi + lo;
}

/**
* Converts this value to the nearest integer.
*
* @return the nearest integer to this value
*/
public int intValue()
{
return (int) hi;
}

/*------------------------------------------------------------
*   Predicates
*------------------------------------------------------------
*/

/**
* Tests whether this value is equal to 0.
*
* @return true if this value is equal to 0
*/
public boolean isZero()
{
return hi == 0.0 && lo == 0.0;
}

/**
* Tests whether this value is less than 0.
*
* @return true if this value is less than 0
*/
public boolean isNegative()
{
return hi < 0.0 || (hi == 0.0 && lo < 0.0);
}

/**
* Tests whether this value is greater than 0.
*
* @return true if this value is greater than 0
*/
public boolean isPositive()
{
return hi > 0.0 || (hi == 0.0 && lo > 0.0);
}

/**
* Tests whether this value is NaN.
*
* @return true if this value is NaN
*/
public boolean isNaN() { return Double.isNaN(hi); }

/**
* Tests whether this value is equal to another <tt>DoubleDouble</tt> value.
*
* @param y a DoubleDouble value
* @return true if this value = y
*/
public boolean equals(DoubleDouble y)
{
return hi == y.hi && lo == y.lo;
}

/**
* Tests whether this value is greater than another <tt>DoubleDouble</tt> value.
* @param y a DoubleDouble value
* @return true if this value > y
*/
public boolean gt(DoubleDouble y)
{
return (hi > y.hi) || (hi == y.hi && lo > y.lo);
}
/**
* Tests whether this value is greater than or equals to another <tt>DoubleDouble</tt> value.
* @param y a DoubleDouble value
* @return true if this value >= y
*/
public boolean ge(DoubleDouble y)
{
return (hi > y.hi) || (hi == y.hi && lo >= y.lo);
}
/**
* Tests whether this value is less than another <tt>DoubleDouble</tt> value.
* @param y a DoubleDouble value
* @return true if this value < y
*/
public boolean lt(DoubleDouble y)
{
return (hi < y.hi) || (hi == y.hi && lo < y.lo);
}
/**
* Tests whether this value is less than or equal to another <tt>DoubleDouble</tt> value.
* @param y a DoubleDouble value
* @return true if this value <= y
*/
public boolean le(DoubleDouble y)
{
return (hi < y.hi) || (hi == y.hi && lo <= y.lo);
}

/**
* Compares two DoubleDouble objects numerically.
*
* @return -1,0 or 1 depending on whether this value is less than, equal to
* or greater than the value of <tt>o</tt>
*/
public int compareTo(Object o)
{
    DoubleDouble other = (DoubleDouble) o;

    if (hi < other.hi) return -1;
    if (hi > other.hi) return 1;
    if (lo < other.lo) return -1;
    if (lo > other.lo) return 1;
    return 0;
  }


/*------------------------------------------------------------
*   Output
*------------------------------------------------------------
*/

private static final int MAX_PRINT_DIGITS = 32;
private static final DoubleDouble TEN = new DoubleDouble(10.0);
private static final DoubleDouble ONE = new DoubleDouble(1.0);
private static final String SCI_NOT_EXPONENT_CHAR = "E";
private static final String SCI_NOT_ZERO = "0.0E0";

/**
* Dumps the components of this number to a string.
*
* @return a string showing the components of the number
*/
public String dump()
{
return "DD<" + hi + ", " + lo + ">";
}

/**
* Returns a string representation of this number, in either standard or scientific notation.
* If the magnitude of the number is in the range [ 10<sup>-3</sup>, 10<sup>8</sup> ]
* standard notation will be used.  Otherwise, scientific notation will be used.
*
* @return a string representation of this number
*/
public String toString()
{
  int mag = magnitude(hi);
  if (mag >= -3 && mag <= 20)
  return toStandardNotation();
return toSciNotation();
}

/**
* Returns the string representation of this value in standard notation.
*
* @return the string representation in standard notation
*/
public String toStandardNotation()
{
String specialStr = getSpecialNumberString();
  if (specialStr != null)
  return specialStr;

  int[] magnitude = new int[1];
  String sigDigits = extractSignificantDigits(true, magnitude);
  int decimalPointPos = magnitude[0] + 1;

  String num = sigDigits;
  // add a leading 0 if the decimal point is the first char
  if (sigDigits.charAt(0) == '.') {
  num = "0" + sigDigits;
  }
  else if (decimalPointPos < 0) {
  num = "0." + stringOfChar('0', -decimalPointPos) + sigDigits;
  }
  else if (sigDigits.indexOf('.') == -1) {
  // no point inserted - sig digits must be smaller than magnitude of number
  // add zeroes to end to make number the correct size
  int numZeroes = decimalPointPos - sigDigits.length();
  String zeroes = stringOfChar('0', numZeroes);
  num = sigDigits + zeroes + ".0";
  }
 
  if (this.isNegative())
  return "-" + num;
  return num;
}

/**
* Returns the string representation of this value in scientific notation.
*
* @return the string representation in scientific notation
*/
public String toSciNotation()
{
// special case zero, to allow as
if (isZero())
return SCI_NOT_ZERO;

String specialStr = getSpecialNumberString();
  if (specialStr != null)
  return specialStr;
 
  int[] magnitude = new int[1];
  String digits = extractSignificantDigits(false, magnitude);
  String expStr = SCI_NOT_EXPONENT_CHAR + magnitude[0];
 
  // should never have leading zeroes
  // MD - is this correct?  Or should we simply strip them if they are present?
  if (digits.charAt(0) == '0') {
  throw new IllegalStateException("Found leading zero: " + digits);
  }
 
  // add decimal point
  String trailingDigits = "";
  if (digits.length() > 1)
  trailingDigits = digits.substring(1);
  String digitsWithDecimal = digits.charAt(0) + "." + trailingDigits;
 
  if (this.isNegative())
  return "-" + digitsWithDecimal + expStr;
  return digitsWithDecimal + expStr;
}


/**
* Extracts the significant digits in the decimal representation of the argument.
* A decimal point may be optionally inserted in the string of digits
* (as long as its position lies within the extracted digits
* - if not, the caller must prepend or append the appropriate zeroes and decimal point).
*
* @param y the number to extract ( >= 0)
* @param decimalPointPos the position in which to insert a decimal point
* @return the string containing the significant digits and possibly a decimal point
*/
private String extractSignificantDigits(boolean insertDecimalPoint, int[] magnitude)
{
DoubleDouble y = this.abs();
  // compute *correct* magnitude of y
  int mag = magnitude(y.hi);
  DoubleDouble scale = TEN.pow(mag);
  y = y.divide(scale);
 
  // fix magnitude if off by one
  if (y.gt(TEN)) {
  y = y.divide(TEN);
  mag += 1;
  }
  else if (y.lt(ONE)) {
  y = y.multiply(TEN);
  mag -= 1; 
  }
 
  int decimalPointPos = mag + 1;
  StringBuffer buf = new StringBuffer();
  int numDigits = MAX_PRINT_DIGITS - 1;
  for (int i = 0; i <= numDigits; i++) {
    if (insertDecimalPoint && i == decimalPointPos) {
    buf.append('.');
    }
    int digit = (int) y.hi;
//     System.out.println("printDump: [" + i + "] digit: " + digit + "  y: " + y.dump() + "  buf: " + buf);

    /**
     * This should never happen, due to heuristic checks on remainder below
     */
    if (digit < 0 || digit > 9) {
//     System.out.println("digit > 10 : " + digit);
//     throw new IllegalStateException("Internal errror: found digit = " + digit);
    }
    /**
     * If a negative remainder is encountered, simply terminate the extraction. 
     * This is robust, but maybe slightly inaccurate.
     * My current hypothesis is that negative remainders only occur for very small lo components,
     * so the inaccuracy is tolerable
     */
    if (digit < 0) {
    break;
    // throw new IllegalStateException("Internal errror: found digit = " + digit);
    }
    boolean rebiasBy10 = false;
    char digitChar = 0;
    if (digit > 9) {
    // set flag to re-bias after next 10-shift
    rebiasBy10 = true;
    // output digit will end up being '9'
    digitChar = '9';
    }
    else {
     digitChar = (char) ('0' + digit);
    }
    buf.append(digitChar);
    y = (y.subtract(DoubleDouble.valueOf(digit))
    .multiply(TEN));
    if (rebiasBy10)
    y.selfAdd(TEN);
   
    boolean continueExtractingDigits = true;
    /**
     * Heuristic check: if the remaining portion of
     * y is non-positive, assume that output is complete
     */
//     if (y.hi <= 0.0)
//     if (y.hi < 0.0)
//     continueExtractingDigits = false;
    /**
     * Check if remaining digits will be 0, and if so don't output them.
     * Do this by comparing the magnitude of the remainder with the expected precision.
     */
    int remMag = magnitude(y.hi);
    if (remMag < 0 && Math.abs(remMag) >= (numDigits - i))
    continueExtractingDigits = false;
    if (! continueExtractingDigits)
    break;
  }
  magnitude[0] = mag;
  return buf.toString();
}


/**
* Creates a string of a given length containing the given character
*
* @param ch the character to be repeated
* @param len the len of the desired string
* @return the string
*/
private static String stringOfChar(char ch, int len)
{
StringBuffer buf = new StringBuffer();
for (int i = 0; i < len; i++) {
buf.append(ch);
}
return buf.toString();
}

/**
* Returns the string for this value if it has a known representation.
* (E.g. NaN or 0.0)
*
* @return the string for this special number
* @return null if the number is not a special number
*/
private String getSpecialNumberString()
{
  if (isZero()) return "0.0";
  if (isNaN()) return "NaN ";
  return null;
}



/**
* Determines the decimal magnitude of a number.
* The magnitude is the exponent of the greatest power of 10 which is less than
* or equal to the number.
*
* @param x the number to find the magnitude of
* @return the decimal magnitude of x
*/
private static int magnitude(double x)
{
double xAbs = Math.abs(x);
  double xLog10 = Math.log(xAbs) / Math.log(10);
  int xMag = (int) Math.floor(xLog10);
  /**
   * Since log computation is inexact, there may be an off-by-one error
   * in the computed magnitude.
   * Following tests that magnitude is correct, and adjusts it if not
   */
  double xApprox = Math.pow(10, xMag);
  if (xApprox * 10 <= xAbs)
  xMag += 1;
 
  return xMag;
}


/*------------------------------------------------------------
*   Input
*------------------------------------------------------------
*/

/**
* Converts a string representation of a real number into a DoubleDouble value.
* The format accepted is similar to the standard Java real number syntax. 
* It is defined by the following regular expression:
* <pre>
* [<tt>+</tt>|<tt>-</tt>] {<i>digit</i>} [ <tt>.</tt> {<i>digit</i>} ] [ ( <tt>e</tt> | <tt>E</tt> ) [<tt>+</tt>|<tt>-</tt>] {<i>digit</i>}+
* <pre>
*
* @param str the string to parse
* @return the value of the parsed number
* @throws NumberFormatException if <tt>str</tt> is not a valid representation of a number
*/
public static DoubleDouble parse(String str)
throws NumberFormatException
{
int i = 0;
int strlen = str.length();

// skip leading whitespace
while (Character.isWhitespace(str.charAt(i)))
i++;

// check for sign
boolean isNegative = false;
if (i < strlen) {
char signCh = str.charAt(i);
if (signCh == '-' || signCh == '+') {
i++;
if (signCh == '-') isNegative = true;
}
}

// scan all digits and accumulate into an integral value
// Keep track of the location of the decimal point (if any) to allow scaling later
DoubleDouble val = new DoubleDouble();

int numDigits = 0;
int numBeforeDec = 0;
int exp = 0;
while (true) {
if (i >= strlen)
break;
char ch = str.charAt(i);
i++;
if (Character.isDigit(ch)) {
double d = ch - '0';
val.selfMultiply(TEN);
// MD: need to optimize this
val.selfAdd(new DoubleDouble(d));
numDigits++;
continue;
}
if (ch == '.') {
numBeforeDec = numDigits;
continue;
}
if (ch == 'e' || ch == 'E') {
String expStr = str.substring(i);
// this should catch any format problems with the exponent
try {
exp = Integer.parseInt(expStr);
}
catch (NumberFormatException ex) {
throw new NumberFormatException("Invalid exponent " + expStr + " in string " + str);
}
break;
}
throw new NumberFormatException("Unexpected character '" + ch
+ "' at position " + i
+ " in string " + str);
}
DoubleDouble val2 = val;

// scale the number correctly
int numDecPlaces = numDigits - numBeforeDec - exp;
if (numDecPlaces == 0) {
val2 = val;
}
else if (numDecPlaces > 0) {
DoubleDouble scale = TEN.pow(numDecPlaces);
val2 = val.divide(scale);
}
else if (numDecPlaces < 0) {
DoubleDouble scale = TEN.pow(-numDecPlaces);
val2 = val.multiply(scale);
}
// apply leading sign, if any
if (isNegative) {
return val2.negate();
}
return val2;

}
}
« Last Edit: December 13, 2011, 07:24:03 pm by ZippyDee »
There's something about Tuesday...


Pushpins 'n' stuff...


Offline jacobly

  • LV5 Advanced (Next: 300)
  • *****
  • Posts: 205
  • Rating: +161/-1
    • View Profile
Re: QuadDouble precision
« Reply #3 on: December 13, 2011, 07:08:46 pm »
BigDecimal can do whatever precision you specify, so it's speed would be proportional to that.
The question is, do you actually need floating points (If you want speed that is.)
Maybe you can use an array of longs, for example, as fixed point.

Offline ZippyDee

  • LV8 Addict (Next: 1000)
  • ********
  • Posts: 729
  • Rating: +83/-8
  • Why not zoidberg?
    • View Profile
Re: QuadDouble precision
« Reply #4 on: December 13, 2011, 07:12:24 pm »
It's for a Mandelbrot zoom, so I want as high of precision as possible with as much speed as possible... The numbers will, of course, be very small, not very large, so that's the precision I'm really interested in. I can use doubles for numbers within the double range, then DoubleDouble calculations within that range, then potentially QuadDoubles within that range, and anything after that would use Apfloats or BigDecimals. That was my plan, anyway...

If I used an array of longs, I wouldn't know how to manipulate them for the precision calculations...Maybe if I could get some explanation of how to do that I could write one with those, but even then I don't know how much faster that would be than just QuadDouble or BigDecimal calculations.
« Last Edit: December 13, 2011, 07:13:01 pm by ZippyDee »
There's something about Tuesday...


Pushpins 'n' stuff...