
Author........Zeda Elnara
e-mail........xedaelnara@gmail.com
Project.......Grammer
Version.......2.22.05.12 (major version followed by the date)
Last Update...22 March 2012
Language......English
Programming...Assembly
Size..........1-Page app

To follow the progress of Grammer, check out these boards where Grammer is actively
updated:
http://www.omnimaga.org/index.php?board=199.0
http://www.cemetech.net/forum/viewforum.php?f=71

Si vous parlez en français, persalteas (de Tout-82 et Éspace-TI) faisait un tuto
pour le Grammer. A ce moment vous pouvez le trouver ici:
http://tiemulation.kegtux.org/Grammertutorial.htm

(Je suis désolé pour ma grammaire, je ne parle pas français)

Updates will probably not occur frequently for the summer of 2012 because I won't
have internet.

If you have questions or suggestions, feel free to email me or post in the forums!

Intro

Grammer is a powerful programming language for the TI-83+/84+/SE calculators.
Unlike TI-BASIC, it is not designed to do math and as such, Grammer math is fairly
limited in some respects. This also means, however, that it uses a math system with
its own tricks and optimisations. If you are going to learn how to effectively use
Grammer, you will first need the Grammer interprter on your calculator (this
document assumes you have the latest version of the Grammer App). After that, you
should become familiar with Grammer's:

• Number system
• Math
• Pointers
• Drawing
• Data structures (sprites, arrays)

Getting Started
First, send Grammer 2 to your calculator. If you have this document, I assume you
have the App.
Next, run the app on your calc. Grammer is now installed. If you want to make a
program, you have to remember two very important things:

http://www.omnimaga.org/index.php?board=199.0
http://tiemulation.kegtux.org/Grammertutorial.htm
http://www.cemetech.net/forum/viewforum.php?f=71

Start the program with .0:. This lets Grammer know it is a Grammer program
End the program with Stop. This lets Grammer know to stop executing code.
Now, before I explain all the technical stuff, could you create this program and
run it?
 :.0:
 :ClrDraw
 :Text(0,0,"YUM
 :DispGraph
 :Stop
It should look like this:

Number System
The Grammer number system works like this:

• Numbers are integers 0 to 65535. This means no fractions, or decimals. There
are a few commands that handle higher numbers.
Let's look at this closer. First, why 65535? That is easy to answer. Grammer

uses 16-bit math. In binary, the numbers are 0000000000000000b to
1111111111111111b. Convert that to decimal (our number system) and you get 0 to
65535. If you don't understand binary or hexadecimal, see the Binary Lesson!
section. Understanding binary and hex is not necessary, but it will help you
understand why certain commands act the way they do. Plus, it can help you figure
out some advanced tricks.

Now, let's look at some scenarios. If you overflow and add 1 to 65535, it
loops back to zero. Similarly, if you subtract 1 from 0, you loop back to 65535.
Then you can see that 65530+11=5. You also now know that -1=65535. So what happens
if you multiply 11*65535? Believe it or not, you will get -11 which is 65536-
11=65525.(If you ever want to go into more advanced math in college, hold on to
this info for when you get into Abstract Algebra. You are working with the ring
Z216).

Division, unfortunately is not as nice as multiplication, addition, or
subtraction. 3/-1 will give you 0 because it is 3/65535. Don't worry, though, there
are ways to get around this, just read the next section.

Math
Grammer math is very different from the math that you are used to. The main

points are:
• Math is done right to left
• All functions in Grammer are math.

For the first point, let's look at an example of the math string 3+9/58-3*14+22:
3+9/58-3*14+22

3+9/58-3*14+4
3+9/58-3*18
3+9/58-54
3+9/4
3+2
5

Parentheses are not part of Grammer math, but to give you better control, you
have two main options: Use a space or a colon between chunks of math to compute
each chunk in order. In most situations, you should use a colon. So say you want to
do ((3+4)*(6+3))/6. You have 3 chunks that you can compute in order:
3+4:*6+3:/6
7:*6+3:/6
7*6+3:/6
7*9:/6
63:/6
63/6
10

Pretty cool, right? That is actually even more optimised than using parentheses! Now, if you are
like me, you might not like the look of that missing remainder of 3 in that division. 63/6 is 10.5, not 10,
but you know Grammer rounds down. But guess what? There is a system variable called θ' that will
contain the remainder after division and other such extra information after math.

You probably want to know what math operations you have access to and what they do, so here
you go:
a+b add This adds two numbers together. If there is overflow, θ'=1, else it is 0.

a-b subtract This subtracts two numbers. If there is overflow, θ'=65535, else it is zero

a*b multiply This multiplies two numbers. Overflow is stored in θ'.

a/b divide This divides two numbers. The remainder is stored in θ'.

a/ b signed divide This divides two signed numbers. There is a space after the /. Example,
65533/65535=3.

a2 squared This squares a number. Overflow is stored in θ'.

-a negative This returns the negative of whatever follows it. Essentially, this is 65536-n.

min(a,b minimum This returns the smaller of two values

max(a,b maximum This returns the larger of two values

sin(a sine This returns the sine of a number as a value between -128 and 127. The eriod is 256,
not 360. For example, sin(32) is like sin(45) in normal math. If you need help, take the
actual sin(45) and multiply by 128. Rounded, this is 91. So, sin(32)=91.

cos(a cosine This computes the cosine of a number. See the notes on sin(.

e^(a 2^ This returns 2 to the power of a. For example, e^(3 returns 8.

gcd(a,b GCD Returns the greatest common divisor of two numbers.

lcm(a,b LCM Returns the lowest common multiple of two numbers.

a>Frac Factor θ' contains the smallest factor of the number. Output is a divided by that number. For
example, 96>Frac will output 48 with θ'=2. You can use this to test primality.

√(a square root Returns the square root of the number, rounded down. θ' contains a remainder.

√('a Rounded sqrt Returns the square root rounded to the nearest integer

abs(a absolute val Returns the absolute value of a number. If a>32767, it is treated as negative.

rand random Returns a random integer between 0 and 65535

randInt(a,b rand integer Returns a random integer between a and b-1

a nCr b n choose r Returns a choose b. In mathematics, this is typically seen as n!/((n-r)!r!). I had to
invent an algorithm for this to avoid factorials because otherwise, you could not do
anything like 9 nCr 7 (9!>65535).

!a Is 0? If the following expression results in 0, this returns 1, else it returns 0.

a and b bit AND Computes bitwise AND of two values. Remember the Binary Lesson! ?

a or b bit OR Computes bitwise OR of two values.

a xor b bit XOR Computes bitwise XOR of two values.

not(a bit invert Inverts the bits in the value.

a=b equal If a and b are equal, this returns 1, else it returns 0.

a≠b not equal If a and b are not equal, this returns 1, else it returns 0.

a>b greater If a is greater than b, this returns 1, else it returns 0.

a≥b greater or equal If a is greater than or equal to b, this returns 1, else it returns 0.

a<b less If a is less than b, this returns 1, else it returns 0.

a≤b less or equal If a is less than or equal to b, this returns 1, else it returns 0.

Pointers and More
To understand pointers, you have to understand how memory works. First, every

byte of memory has what is called an address. An address, is a pointer to that
byte. For example, the first byte of memory is at address 0, the second byte is at
address 1, et cetera. On the calcs, there are 65536 bytes of memory addressed at a
time. The last 32768 bytes are RAM. This is where your program and everything in it
get stored. This has some powerful implications. If you have a pointer to a section
of code and you tell Grammer to start executing there, it can jump there
immediately. If you have a pointer to a string, you can use that pointer to draw
the string or use it. This means you don't have to create any external variables
for your strings or sprites. If you want to create an appvar for save data, having
the pointer to that lets you edit the data, save to it, or read from it. Pointers
are powerful. As such, you will probably be using a bunch of them, so you should
use pointer vars:

Pointer Vars-(or just "vars") are two byte values. These can hold a 16-bit number,
so these are well suited to holding pointers. These are all the letters A to Z and
θ and A' to Z' and θ'. Also, for readability, you can use the lowercase letters
instead of A', for example.
How do you store to these? Like all BASIC programmers know, use →. For example:

:3→A
Likewise, for a string:

:"Hello World→a ;instead of A', I used a
Don't be fooled, that does not store the string anywhere. It just stores the address of the string to A. So
if you change the byte at A, you will change the "H" in your program. If you want to try it, run this
program and then check the source again.

:.0:
:"HELLO WORLD→A
:int(A,47 ;This changes the byte to byte 47. Bytes are 0 to 255.
:Stop

Now you know that byte 47 corresponds to the token "QuartReg ". Be careful, though, not all tokens
are one byte. Lowercase letters are a notorious example of two-byte tokens.

Where else are pointers useful? The best example is actually with labels or
finding programs. Anything that requires searching, actually. For example, in
Grammer, to goto a label, you would do Goto Lbl "HI and that would jump to the
label named .HI. You can also get a pointer to this label. If you need to jump to

that label often, this saves lots of time by not having to search for the label
every time. Remember, everything is math in Grammer:

:.0:
:Lbl "HI→A
:Repeat getKey(15 ;getKey(15 returns 1 if clear is being pressed
:prgmA ;This calls the subroutine pointed to by A
:End
:Stop
:.HI
:B+1→B
:Text('0,0,B ;Displays the number B at (0,0)
:End ;Always at the end of a subroutine

Now I want to take time to finally start explaining some code.
Labels can be a bit more descriptive than in BASIC. You can use up to 42 bytes for a name,

technically, but try to maintain readability. You can also use pretty much whatever tokens you want in
a label name. For example, I had a label named ICircle(that I had draw inverted filled circles. Lbl
takes a string argument where the string is the name of a label. It outputs the pointer to the line after the
label.

Goto and prgm let you redirect your program. Goto jumps to the code and prgm will execute
the code and return once it gets to End. Both of these take a pointer to figure out where to go.

Repeat works like it does in TI-BASIC. It first executes the code between Repeat and End and
then it tests the condition. If the result is 0, it repeats the procedure. If it is anything else, it stops
looping and continues.

getKey gives you two ways to read keys. Key codes are different in Grammer from TI-BASIC.
The first way is to use it like you would in TI-BASIC. For example, getKey→A stores the keypress in
A. You can also use getKey(15 to quickly test a specific key. This is great if you want to use multiple
key presses.

Command List
Here are a bunch of commands that do not fit in the drawing or math category. This is a whole

lot of info (about 9 pages), but I made some examples later on so that you can figure out how to use
these better :)

Operators
→ This stores the last computed value to a variable. For example:

 :Return→A'
That will store the value output from Return to A'.
There are many ways to store data:
3→A ;Stores 3 to the pointer var A
3→a ;Stores to the pointer var a which is also A'
3→iA ;Stores 3 to the OS real var A
C*D→AB ;Stores the result to B and Ɵ' to A.
"Hello→Str1 ;Stores the string to the OS string, Str1

"Hello→Str12 ;Stores to the hacked OS string 12. Str0=Str10, by the way.
"Hello→Str1' ;Stores to the OS string Str1, but with a newline token at
the end. This lets you use the OS string as a Grammer string, too.

// This is used to start a comment. Anything up to the next newline will be
ignored.

" This starts a string. The output is a pointer to the string that can be
used later to reference it.

Ä If you put a pi symbol before a number, the number is read as hexadecimal.
For example, Ä3F would be read as 63.

! This has several uses. The first is to work like the not() token in TI-
BASIC. So for example, 3=4 would return 0 because it is not true. However,
!3=4 would return 1. Likewise, !3=3 would return 0. The other use is with
loops. For example, If A=3 will test if A is 3 and if it is, it executes
the code. However, !If A=3 will execute the code if A is not 3. See If ,
If... Then... End, While, Repeat, and Pause If.

i This is the imaginary i. Use this to access OS real vars. For example, to
read OS var A and store it to Grammer var A:
 :iA→A
And to store a Grammer var to an OS var:
 :B'→iA

This does not read decimals or imaginary pasrts of a number.
E This indicates the start of a binary string. This is the exponential E.

. This is used to start a label name. For example:
 :.HELLO
Anything after this up until a newline is ignored.

Loops/Conditionals
If If the expression following is not 0, the line following it will be

executed. The line is skipped if it is 0. Conditions are computed to the
next newline. For example, you can have → and : in an If statement in
Grammer.
 :If A=B ;Since A=B is false, the following line is skipped
 :9→A
Or also:
 :If 3=B→A:*14:-14 ;This is the full statement
 :Text(0,0,"Yay!

If... Then...
End

This is similar to If except if the statement results in 0, any code
between amd including Then and End will be skipped. This works like the
TI-BASIC command. For example:

 :If 3=4 ;3=4 returns 0
 :Then
 :3→A
 :9→B
 :16→C
 :End

For(The arguments for this are:
 For(Var,Start,End
Var is the name of a var
Start is the starting value to load to the var
End is the max value to load to the var
Alternatively, you can use:
 For(Val
Val is the number of times to execute the loop. 0=65536
What this does is it loads the initial Start value into Var. It executes
code until it reaches an End statement, then it incrememnts the var. If
incrementing goes higher than End, the loop finishes and code continues,
otherwise it executes the loop again. So for an example:
 :For(R,0,48
 :Circle(32,48,R,1
 :DispGraph
 :End
 :Stop

Pause If This will pause so long as the condition is true for example, to pause
until a key is pressed, Pause If !getKey
Alternatively, using !Pause If will pause while the condition is false.
So to pause until enter is pressed, do !Pause If 9=getKey

While While loops are like If statements addicted to crack-- they just keep
coming back. An If statement is content with just checking if the result
is true (true=1), but a while loop will not only execute the code up to
End if it is true, but it will loop back to try it again! To give you an
idea, this will keep looping until Clear is pressed, and while it is at
it, it will increment A and decrement B:
 :0→A→B
 :While getKey≠15
 :A+1→A
 :B-1→B
 :End ;This tells the While loop to End and restart!
Alternatively, !While will only execute the code if the statement is not
true.

Repeat This is a loop that is kind of the opposite of a While loop. This will
repeat the code up to an End until the statement is true. So for
example, to wait until clear is presed:

 :Repeat getKey=15
 :End
!Repeat checks if the statement is false in order to end. For example,
to remain in the loop while Enter is being pressed:
 :!Repeat getkey=9
 :End

Control

Return This returns a pointer to the next line of code.
Goto This is unlike the BASIC Goto command. This jumps to a pointer as

opposed to a label. For example:
 :Return→L
 :<<code>>
 :Goto L ;This jumps to the line after "Return→L"

Lbl This returns the pointer of a label. The argument is a pointer to the
label name. For exaple, Lbl "HI will search for .HI in the program code.
Also, you can specify which variable the label is in. For example, if
you wanted to jump to a laqbel in another program, you can add a second
argument as the name of the var. For example, to find the label HI in
prgmBYE:
 Lbl "HI","EBYE

Pause This will pause for approximately x/100 seconds. So Pause 66 will pause
for about .66 seconds.

prgm This is used to execute a sub routine.
Func The arguments are:

 FuncPointer[,Counter
This will automatically execute the subroutine pointed to by <<pointer>>
based on Counter. Counter is based on an internal counter, not based on
actual timings like seconds or milliseconds. The default is 128. So for
example:
 :FuncLbl "DISP
 :Repeat getKey(15
 :<<do stuff>>
 :End
 :Stop
 :.DISP
 :DispGraph
 :End
That will do DispGraph several times per second automatically.

Asm(This can be used to run an assmebly program. For technical info, see
this section. Unsquished ASM programs are not yet supported.

AsmPrgm This allows you to input asm code in hex. (C9 is needed)
ln(This will let you jump forwards or backwards a given number of lines.

For example:
 :ln(3
 :"NOT
 :"Executed
 :"YAY :D
Or to jump backwards:
 :"YAY :D
 :"Erm...
 :"Yeah...
 :ln(-3

á This can be used to execute a specific line of code. The syntax is:
 áLineNumber[,Start[,Size[,LineByte
LineNumber is the line to execute. 1 corresponds to the first line,
0=65536
Start is where the lines start. By default, the start of the main
program is used, but this can be a pointer to a label or other program.
Size is the maximum number of bytes to search for the line in. By
default, 32768 is used (0=65536).
LineByte is the byte to use as a line token when searching for a line.
Remember, though, that the code itself will be executed to a newline.

Input/Computing
getKey This returns a value from 0 to 56 that is the current key press. You

can use this chart for values.
Also, getKey(will allow you to see if a key is being pressed. For
example, getKey(9 will return 1 if enter is pressed

Input This lets you inquire for input from the user. The Input routine
has been updated to be free of bugs (too my knowledge). Syntax:
 Input [String
The input will be after the last drawn text. String will be placed
directly after input. If this argument is omitted, nothing is used.
This returns a pointer to the string that was input. To compute a
string, use expr(. Here is a great example of using this.

Ans This will return the value of the previous line
expr(This will compute a string as a line of code (useful with Input)

inString(This is similar to the TI-BASIC command. This will return the
location of a sub-string. The inputs are where to start searching
and the string to search for:
 inString(SearchStart,SearchString
So an example would be:
 :Lbl "DATA→A
 :inString(A,"How→B
 :.DATA
 :HELLOHowdyWoRlD!
The size of the input string is returned in Ɵ' and if there was no
match found, 0 is returned.

length(This will return the size of a variable (in RAM or Archive) as well
as the pointer to the data in Ɵ'. For example, to get the size of
the appvar Data:
 :length("UData→A
If the var is not found, -1 is returned.

length(' This is used to search for a line. For example, if you want to find
a specific line number in a program, this is what you would use. The
syntax:
 length('StartSearch,Size,LineNumber,[LineByte
StartSearch is where to begin the search
Size is how many bytes to search in. 0 will search all RAM.
LineNumber is the line number you are looking for
LineByte is an optional argument for what byte is considered a
 new line.
The output is the location of the string and Ɵ' has the size of the
string. If the line is not found, the last line is returned instead.

solve(command subset
CopyVar solve(0,"VarName1","VarName2"[,size[,offset

 This will copy the program named by VarName1 from RAM or
 archive to a new program named by VarName2. If Varname2
 already exists, it will be overwritten. So for example,
 to copy Str6 to Str7:
 :solve(0,"DStr6","DStr7
 This returns the pointer to the new var and the size of
 the var is in Ɵ'
The last arguments are optional. Size lets you choose how many
bytes are copied (instead of just copying the whole var). You can
also add an offset argument to tell where to start reading from.

CopyDataI solve(1,loci,locf,size
 This copies data from loci to locf. (Forward direction)

CopyDataD solve(2,loci,locf,size
 This copies data from loci to locf. (Backward direction)

ErrorHandle solve(3,Pointer
 This will allow your program to have a custom error
 handler. Pointer is 0 by default (meaning Grammer will
 handle it). Otherwise, set it to another value and grammer
 will redirect the program to that location. The error code
 is returned in Ans. For Example:
 :solve(3,Lbl "ERR
 :<<code>>
 :.ERR
 :If =1 ;Means there was a memory error
 :Stop
 :End
 Ans and Ɵ' are put back to normal when the error handler
 completes.
Errors:
 0=ON
 1=Memory

CallError solve(4,Error#
 This will execute the error code of a Grammer error. For
 example, to make a Memory error:
 :solve(4,1
 Using Error 2, you can input a string for a custom error:
 :solve(4,2,"Uh-Oh!

WritePort solve(5,value[,port
 This is used to write a byte to a port. This requires some
more advanced knowledge of the calculator, but check the Ports
section for some info. If you omit the port argument, it will
assume port 0.

ReadPort solve(6[,port
 Omitting the port argument will assume port 0.

Physics
R▶Pr(This will clear the particle buffer.
R▶Pθ(This will recalculate the particle positions and draw them. If you

want to change the particle buffer, just add a pointer argument.
If you want to use a program, for example, as a buffer:
 :Get("EBUF→A
 :R▶Pθ(A-2

P▶Rx(This will add a particle to the buffer. Just use the pixel
coordinate position. For example:
 :P▶Rx(2,2

P▶Ry(This will cahnge the particle effect. 0 is normal sand, 1 is
boiling, 2 lets you put in a basic custom rule set. If you want it
to check Down, then Left/Right, then Up, use the following
pattern:
 0000 1000 0110 0001
That makes it first check down, if it cannot go down, it then
checks left or right, if it cannot go left or right, it tests up.
In decimal, that is 2145, so you would do:
 P▶Ry(2,2145
To make things easier, though, you can just use a string. THis
will achieve the same thing:
 P▶Ry(2,"D,LR,U
Note that you do need the actual string, not a pointer.

P▶Rx(' This will convert a rectangular region of the screen to particles.
The inputs are:
 P▶Rx('Y,X,Height,Width
This scans the area for pixels that are turned on and adds them to
the current particle buffer.

Miscellaneous
conj(**Warning: I have no knowledge of musical lingo, so excuse my

mistakes**
This is a sound command with three inputs. The syntax is:
 conj(Note,Octave,Duration
Notes are:
 0 =C 1 =C# 2 =D 3 =D#
 4 =E 5 =F 6 =F# 7 =G
 8 =G# 9 =A 10=A# 11=B
Octave is 0 to 6
Duration is in 64th notes. So for example, a 32nd dot note use
3/64th time. Duration is thus 3.

conj(' This sound routine has several inputs:
 conj('Duration,'Period
 conj('Duration,DataLoc,Size
This reads data for the period directly to save time (intead of
converting numbers on the fly). Size is the size of the data in
words, not bytes.

Drawing
Drawing in Grammer has a few similarities to TI-BASIC, but not many. The

first concept I want to tell you about is that of drawing buffers. These include
the graph screen and other chunkc of memory that you use like the graph screen. A
drawing buffer is 768 bytes and there are two that do not use user RAM that you can
use in Grammer. Their pointers are Ä9872 and Ä9340. The first is called
AppBackUpScreen by assembly programmers and the second is what we know as the graph
screen. The graph screen is default. You can also use Ä86EC, but Grammer uses that
for scratch work for a few commands as well. Now, to the actual drawing!

In all cases, (0,0) is the upper left corner of the screen. If you want to
try to draw a circle and you are a BASIC coder, this might convert you to Grammer:
 :.0:
 :ClrDraw
 :Repeat getKey(15
 :randInt(0,96→X
 :randInt(0,64→Y
 :randInt(0,64→R
 :Circle(Y,X,R,3 ;Draws a circle with an inverted outline at (Y,X)
 :DispGraph
 :End
 :Stop

If you tried it, you will see that drawing in Grammer is very fast compared
to BASIC. One of the reasons is that Grammer does not update the LCD with the
contents of the graph screen automatically. This means you have to do it yourself
with DispGraph and this means that you can do a lot of drawing without showing your
users the behind the scenes stuff.

Now let's say you want to draw to set another buffer as default. This is
where you use Disp:
 :Disp Ä9872

Now, whenever you draw or update the LCD, that is the buffer that will be
used. This means you can preserve the graph screen. Alternatively, most drawing
commands have an optional argument to draw to a specific buffer.

Grayscale
Grayscale is a feature in Grammer that can be used if you do it correctly.

Now that you know how buffers work, you can give this a try. First, you need two
buffers-- the primary buffer and the secondary buffer. Define these using Disp '
and Disp °, respectively (both found in the Angle menu). For example, to add the
secondary buffer, use Disp °Ä9872 and now whenever you use DispGraph, it will
update one cycle of gray. Because the LCD does not support grayscale naturally, you
will need to update the LCD often and regularly. This is what I managed to do (and
yes, I drew this myself :3)

There are 12 color schemes available, 2 give the same effect. The default is
50-50, meaning each pixel draws 50% color from each buffer. If you change it to 75-
25, 75% of the color is taken from the primary buffer. Here are the available modes
(using some rounding):
0 0 -100
1 50 -50
2 67 -33
3 75 -25
4 83 -17
5 92 -8
6 100-0
7 50 -50
8 33 -67
9 25 -75
10 17 -83
11 8 -92
 Because grayscale is so important, I will give an example program that draws
in grayscale:
 :.0:
 :Ä9872→Z
 :Disp °Z
 :ClrDraw
 :ClrDrawZ
 :0→X→Y
 :2→Disp
 :Repeat getKey(15
 :Pxl-Change(Y,X ;Just drawing the cursor
 :Pxl-Change(Y,X,Z ;Pixel changing it on both buffers
 :DispGraph
 :Pxl-Change(Y,X
 :Pxl-Change(Y,X,Z
 :getKey→A
 :If =54: or A=9 ;If [2nd] or [Enter]
 :Pxl-On(Y,X,Z
 :If A=9: or A=48 ;If [Enter] or [Alpha]
 :Pxl-On(Y,X
 :If A=56: or A=54 ;If [Del] or [2nd]
 :Pxl-Off(Y,X
 :If A=56: or A=48 ;If [Del] or [Alpha]
 :Pxl-Off(Y,X,Z
 :X+getKey(3:-getKey(2:If <96
 :→X
 :Y+getKey(1:-getKey(4:If <64
 :→Y
 :End
 :Stop

Sprites
Using sprites is a pretty advanced technique, so don't expect to understand

everything here.
Sprites are pretty much mini pictures. They are a quick way to get detailed

objects that move around making them a powerful graphics tool. In Grammer, the main
sprite commands are Pt-On(and Pt-Off(and both have differences and advantages
over the other.
Sprite Data
Sprite data is in the form of bytes or hexadecimal and you will want to understand
binary to hex conversions for this. For example, to draw an 8x8 circle, all the
pixels on should be a 1 in binary and each row needs to be converted to hex:
0 0 1 1 1 1 0 0 =3C
0 1 0 0 0 0 1 0 =42
1 0 0 0 0 0 0 1 =81
1 0 0 0 0 0 0 1 =81
1 0 0 0 0 0 0 1 =81
1 0 0 0 0 0 0 1 =81
0 1 0 0 0 0 1 0 =42
0 0 1 1 1 1 0 0 =3C
 So the data would be 3C4281818181423C in hexadecimal.
Sprite Logic
 There are 5 forms of sprite logic offered by Grammer, currrently. These tell how
the sprite should be drawn and can all be useful in different situations.
Overwrite:
 For an 8x8 sprite, this will erase the 8x8 area on the screen and draw the
sprite.
AND:
 This leaves the pixel on the screen on if and only if the sprites pixel is on
and the pixel on the screen is on.
OR:
 This will turn a pixel on on the screen if it is already on or the sprite has
the pixel on. This never erases pixels.
XOR:
 If the sprites pixel is the same state as the one on the screen, the pixel is
turned off, otherwise, it is turned on. For example, if both pixels are on, the
result is off.
Erase:
 Any pixels that are on in the sprite are erased on screen. The pixels that are
off in the sprite do not affect the pixels on the graph buffer.
Pt-On(
 This is used to display sprites as tiles. This means it displays the sprite very
quickly, but you can only draw to every 8 pixels.
Pt-Off(
 This is a slightly slower sprite routine, but it allows you to draw the sprite
to pixel coordinates.

Drawing Commands
These are the drawing commands. Some of these have alternate syntaxes that do

very different things. This section alone is six pages.
Graphics
DispGraph Displays the graph screen. You can display another buffer by using

a pointer. For example, DispGraphÄ9872
Circle(The syntax is:

 Circle(Y,X,R[,Method[,pattern[,buffer
This draws a circle using Y and X as pixel coordinates and R as
the radius of the circle in pixels. Method is how to draw the
circle:
 1-Black border (Default)
 2-White border
 3-Inverted border
Pattern is a number from 0 to 255 that will be used as a drawing
pattern. For example, 85 is 01010101 in binary, so every other
pixel will not be drawn. Use 0 for no pattern. If the bit is 0,
the pixel will be drawn, if it is 1, it won't be drawn. Buffer is
the buffer to draw to (useful with grayscale).

Pt-Off(This is used to draw sprites to pixel coordinates. It is limited
in some ways, compared to the Pt-On(command, but more flexible in
others. The syntax is:
 Pt-Off(Method,DataPointer,Y,X,[Width,[Height[,Buffer
Method is how the sprite is drawn:
 0-Overwrite
 This overwrites the graph screen data this is drawn to.
 1-AND
 This draws the sprite with AND logic
 2-XOR
 This draws the sprite with XOR logic
 3-OR
 This draws the sprite with OR logic
 5-Erase
 Where there are normally pixels on for the sprite, this
 draws them as pixels off.
DataPointer is a pointer to the sprite data
Y is the pixel Y-coordinate
X is the pixel X-coordinate
Width is 1. More options may be due in the future, but for now,
just put 1 :) The default is 1.
Height is the number of pixels tall the sprite is. 8 is default
*By adding 8 to the Method, the data will be read as hexadecimal

Pt-On(This also draws sprites, but only to 12 columns (every 8 pixels).
This is slightly faster than Pt-Off(and has the advantage of
variable width. It also has the DataSwap option that isn't present
with the Pt-Off(command. Here is the syntax of the command:
 Pt-On(Method,DataPointer,Y,X,[Width,[Height[,Buffer
Method-This is how the sprite is drawn:
 0-Overwrite
 1-AND
 2-XOR
 3-OR
 4-DataSwap
 This swaps the data on the graph screen with the sprite
 data. Doing this twice results in no change.
 5-Erase
 6-Mask
 This will display a masked sprite.
 7-Gray
 This draws a frame of a 3 level gray sprite
DataPointer is a pointer to the sprite data
Y is the pixel Y-coordinate
X is a value from 0 to 11.
Width is how wide the sprite is. 1=8 pixels, 2=16 pixels,....
Default is 1.
Height is the number of pixels tall the sprite is. Default is 8.
*By adding 8 to the Method, the data will be read as hexadecimal

Line(' This is used to draw lines. The syntax for this command is:
 Line('x1,y1,x2,y2[,Method[,Buffer
So it is two sets of pixel coordinates and then the Method:
 0=White
 1=Black
 2=Invert
If Method is ommitted, it uses 1 as the default.
Buffer is the buffer to draw to.

Text(Text(has a lot of neat features in Grammer. First, Grammer uses
its own font default. It works like the homescreen in that it
draws in 24 columns (the homescreen draws in 16 columns). The font
is 4x6 and is fixed width. However, here are the neat aspects and
how to use the command. Using the Output(command will let you
choose other font styles such as plotting to pixel coordinates.
-To draw text, simply do this:
 :Text(Y,X,"Text ;"Text" can be a pointer to a string
-To draw a number, use the ' symbol:
 :Text('Y,X,99

-To draw a number in a specific base (use 2 to 32), add another
argument:
 :Text('Y,X,99,16 ;drawn in hexadecimal (so it shows 63)
-To draw at the end of the last text drawn, use a degree symbol to
replace coordinates:
 :Text(°"Text
-Likewise, you can do this with numbers:
 :Text('°99,2 ;draws 99 in binary
-Another feature is using /Text(or Text(r for typewriter text
mode (that is the superscript r found at [2nd][APPS]). This will
display characters with a delay. The delay is chosen with Fix
Text(. This will even display the individual letters in a token as
if it is being typed. Here is an example:
 :/Text(Y,X,"HELLO
-And you can use numbers and other operators, too!
-Another thing that is nice is that text wraps to the next line
and if it goes off the bottom, it wraps to the top.
-To display a char by number, the arguments are:
 :Text(Y,X,'#
 The ' operator tells it to draw char(#).
-To draw text as an ASCII string, use ° before the string. For
example:
 :Text(Y,X,°"HIrandM(WORLD
That will display the text "HI WORLD" because randM(corresponds
to the space char in the ASCII set.

To display 32-bit number display. The upper and lower 16-bits must
be in a pVar. An example where B is the upper 16-bits and C' is
the lower 16-bits:
 :Text('0,0,BC'

Using the Text(command with no arguments returns the X position
in Ans and the Y position in Ɵ'.

If you want to draw to coordinates based on the last drawn
coordinates, you can do something like this:
 :Text(+3,+0,"Hello
But instead of +0, just leave it empty like this:
 :Text(+3,,"Hello

Line(This is used to draw rectangles. The syntax for this command is:
 Line(x,y,Height,Width,Method[,Buffer
x is a value from 0 to 95 and is the x pixel coordinate to begin drawing at
y is a value from 0 to 63 and is the y pixel coordinate to begin drawing at
Height is a value from 1 to 64 is the number of pixels tall the box will be

Width is a value from 1 to 96 is the number of pixels tall the box will be
Method is what kind of fill you want:
 0-White. This turns off all of the pixels of the rectangle
 1-Black. This turns on all of the pixels of the rectangle
 2-Invert. This inverts all of the pixels of the rectangle
 3-Black border. Draws a black perimeter not changing the inside
 4-White border. Draws a white perimeter not changing the inside
 5-Inverted border. Draws an inverted perimeter not changing the inside
 6-Black border, White inside.
 7-Black border, Inverted inside.
 8-White border, Black inside.
 9-White border, Inverted inside.
 10-Shifts the contents in that rectangle up
 11-Shifts the contents in that rectangle down
 12-
 13-
 14-Returns the number of ON pixels in the rectangular region
 15-Returns the number of ON pixels on the border of the rectangular region

Pxl-On(This turns a pixel on using coordinates (y,x). To draw to a
specific buffer, add its pointer as a last argument.

Pxl-Off(This turns a pixel off using coordinates (y,x). To draw to a
specific buffer, add its pointer as a last argument.

Pxl-Change(This inverts a pixel using coordinates (y,x). To draw to a
specific buffer, add its pointer as a last argument.

ClrDraw This clears the graph screen buffer and resets the text
coordinates. Optionally, you can clear a specific buffer by
putting its pointer directly after. For example, ClrDrawπ9872

ClrHome This clears the home screen buffer and resets the cursor
coordinates

Shade(This sets the contrast to a value from 0 to 39. 24 is normal and
this is not permanent.

Horizontal This draws a horizontal line on the graph. The syntax is
Horizontal y[,method,[,Buffer
y is a value from 0 to 63
method is how to draw the line:
 0=draws a white line
 1=draws a black line
 2=draws an inverted line
Buffer is the buffer to draw to.

Vertical This draws a vertical line on the graph. The syntax is:
 Vertical x[,method[,Buffer
x is a value from 0 to 95
method is how to draw the line:
 0=draws a white line
 1=draws a black line
 2=draws an inverted line
Buffer is the buffer to draw to.

Tangent(This is used to shift the screen a number of pixels. The syntax
is:
 Tangent(#ofShifts,Direction[,Buffer
of shifts is the number of pixels to shift the graph screen
Direction is represented as a number:
 1 = Down
 2 = Right
 4 = Left
 8 = Up
You can combine directions by adding the values. For example,
Right and Up would be 10 because 2+8=10

Disp This will let you change the default graph buffer. For example, if
you don't want to use the graph screen, you can put this at the
start of the program:
 :Disp Ä9872
Also, if you are using grayscale, you can use the following:
Disp ' will set the primary buffer.
Disp ° will set the secondary buffer.
There are 12 color schemes (10 are unique, 2 are the same). You
can access these by using #→Disp. For example, 1→Disp uses 3-level
gray drawing 50% color from the first buffer and 50% color from
the other.
 | # |Primary |Secondary
----+------+--------+--------+
 | 0 | 0% | 100% |
 | 1 | 50% | 50% | Default
 | 2 | 66% | 33% |
 | 3 | 75% | 25% |
 | 4 | 83% | 17% |
 | 5 | 92% | 8% |
 | 6 | 100% | 0% |
 | 7 | 50% | 50% | same as 1
 | 8 | 33% | 66% |
 | 9 | 25% | 75% |
 | 10 | 17% | 83% |
 | 11 | 8% | 92% |

Pt-Change(This command is used to draw tilemaps. There is currently one
method, but more should be added in the future. Here is the
syntax:
 Pt-Change(0,MapData,TileData,MapWidth,MapXOffset,MapYOffset,TileMethod
 -MapData is a pointer to the map data
 -TileData is a pointer to the tile set
 -MapWidth is the width of the map (at least 12)
 -MapXOffset is the X offset into the map data
 -MapYOffset is the Y offset into the map data
 -TileMethod is how the sprite will be drawn (see Pt-On()

Fill(0-Black
 This fills the screen buffer with black pixels
 1-Invert
 This inverts the screen buffer
 2-Checker1
 This fills the screen buffer with a checkered pattern
 3-Checker2
 This fills the screen buffer with another checkered pattern
 4,x-LoadBytePatternOR
 copies a byte to every byte of the buffer data with OR
 logic
 5,x-LoadBytePatternXOR
 copies a byte to every byte of the buffer data with XOR
 logic
 6,x-LoadBytePatternAND
 copies a byte to every byte of the buffer data with AND
 logic
 7,x-LoadBytePatternErase
 copies a byte to every byte of the buffer data with Erase
 logic
 8,x-BufCopy
 x points to another buffer. The current buffer gets
 copied there
 9,x-BufOR
 x points to another buffer. This gets copied to the
 current buffer with OR logic.
 10,x-BufAND
 x points to another buffer. This gets copied to the
 current buffer with AND logic.
 11,x-BufXOR
 x points to another buffer. This gets copied to the
 current buffer with XOR logic.
 12,x-BufErase
 x points to another buffer. This gets copied to the
 current buffer by erasing.

 13,x-BufSwap
 x points to a buffer. This swaps the current buffer with
 the other.
 14,x-CopyDownOR
 The current buffer is copied x pixels down to itself
 with OR logic
 15,x-CopyDownAND
 The current buffer is copied x pixels down to itself
 with OR logic
 16,x-CopyDownXOR
 The current buffer is copied x pixels down to itself
 with OR logic
 17,x-CopyDownErase
 The current buffer is copied x pixels down to itself
 with OR logic
 18,x-CopyUpOR
 The current buffer is copied x pixels up to itself with
 OR logic
 19,x-CopyUpAND
 The current buffer is copied x pixels up to itself with
 OR logic
 20,x-CopyUpXOR
 The current buffer is copied x pixels up to itself with
 OR logic
 21,x-CopyUpErase
 The current buffer is copied x pixels up to itself with
 OR logic
 22,type-FireCycle
 This burns the contents if the screen for one cycle. If
 type is 0, white fire is used, if it is 1, black fire is
 used.
 23,Type,Y,X,Width,Height-Fire Cycle 2
 Type is the same as FireCycle and the other inputs are the
same as Pt-On(where X and Width go by every 8 pixels.

RecallPic Recall Pic #[,Method[,Buffer
This is used to copy a picture to the current buffer. For example:
 :RecallPic 0
This works for pictures 0 to 255 and archived pics.
NOTE: 0=Pic1, 1=Pic2, 2=Pic3,...,9=Pic0
The methods are:
 0=Overwrite
 1=AND
 2=XOR
 3=OR
 5=Erase

StorePic StorePic #[,Buffer
This stores the contents of the current buffer to a picture. This
automatically deletes a preexisting picture. You can use this to
store to pictures 0 to 255.

Data Structures
Grammer doesn't really have any data structures which is both good and bad.

Bad because it makes you have to think a little more about how to approach a
problem, but good in that it allows you to create precisely what you need. This is
where you will need commands to create variables, insert or remove data, and edit
the data. I will also try to explain how to create some basic data structures like
arrays and matrices. First, here are the commands you have to work with:
Memory Access
Get(This uses a string for the name of an OS var and returns a pointer

to its data.
-If the variable does not exist, this returns 0
-If it is archived, the value returned will be less than 32768
-Ɵ' contains the flash page the variable is on, if it is archived,
otherwise Ɵ' is 0
As an example, Get("ESPRITES→A' would return a pointer to the data
of prgmSPRITES in A'.

(Use this to read a byte of data from RAM
{ Use this two read a two byte value from RAM (little endian)
int(Use this to write a byte of data to RAM.
iPart(Use this to write a word of data to RAM, little endian (a word is 2

bytes). For example, to set the first two bytes to 0 in prgmHI:
 :Get("EHI→A
 :iPart(A,0

Send(Use this to create Appvars or programs of any size (so long as
there is enough memory). For example, to create prgmHI with 768
bytes:
 :Send(768,"EHI
Programs must be prefixed with "E", protected programs "F" and
appvars "U"
Also, you can use lowercase letters if you want :)

[

[[

[(

This allows you to write multiple bytes to a RAM location. For
example, to write some bytes to the address pointed to by A:
 :A[1,2,3,4
To store some values as words, you can use º after the number.
These will be stored little endian. For example:
 :A[1,2,3º,4
In order to store all values as words, use [[instead:

 :A[[1,2,3,4
To directly store hexadecimal, use [(. For example:
 :A[(3C7EFFFFFFFF7E3C

IS>(This is used to read memory. The argument is one of the pointer
vars. It reads the byte pointed to by the pvar and then the pvar is
incremented (so consecutive uses will read consecutive bytes). For
example, to display the hex of the first four bytes of a var:
 :Get("EPROG→Z
 :Text('0,0,IS>(Z,16 ;The bold is the Text(arguments.
 :Text('o,IS>(Z,16
 :Text('o,IS>(Z,16
 :Text('o,IS>(Z,16

Archive Follow this with a var name to archive the var. For example, to
archive prgmPROG, do this:
 :Archive "EPROG

Unarchive Use this like Archive, except this unarchives the var
Delvar Use this like Archive, except this will delete a var
sub(Use this to remove data from a variable. the syntax is:

 :sub(#ofBytes,Offset,"Varname
For example, to delete the first 4 bytes of program Alpha:
 :sub(4,0,"EAlpha

augment(This is used to insert data into a var. The syntax is:
 :augment(#ofbytes,Offset,"VarName
For example, to insert 4 bytes at the beginning of appvar Hello
 :augment(4,0,"UHello

Now let's make an array! First you need to know what you want. Do you want to
have 2-byte pieces of data or 1-byte? I like using 1 byte, so here is what we do:
 :.0:
 :Send(256,"VDat→Z ;We create a TempProg with 256 bytes of data called Dat.
 :Z[rand,rand,rand ;write 3 random bytes.
 :ClrDraw
 :For(3
 :Text('oIs<(Z ;Display the value at byte Z. Also increments Z.
 :Text('o",
 :DispGraph
 :End
 :Stop
That didn't really need a 256-byte vaariable, but I figured I would show how to
make one. Anyways, what that did was make a 256-byte tempprog (which the OS
automatically deletes once control is returned to the OS and you are on the
homescreen). Then, we stored 3 random values to the first three bytes, then we
displayed those values with commas after each number. If you want to use that 256
bytes for a matrix, instead, you can make it a 16x16 matrix and access elements

using a formula. For example, to read (Y,X):
 :(Z+X+Y*16
That means that the data is stored in rows. That is why we take the row number and
multiply by 16 (that is the number of elements per row). This happens to be the
syntax that tilemaps are stored (stored in rows).

Miscellaneous
Modes
Fix Text(Use this to set the typewriter delay. The larger the number, the slower

the typewriter text is displayed.
Fix Use this to set certain modes. For all the modes that you want set, add

the corresponding values together. For example, to enable inverse text
and inverse pixels, use Fix 1+2 or simply Fix 3
Here are the modes:
 1-Inverse text
 2-Inverse pixels. Now, on pixels mean white and off means black.
 In assembly terms, it reads from the buffer, inverts the data
 and sends it to the LCD.
 4-Disable ON key. This will allow ON to be detected as a key, too
 8-Hexadecimal Mode. (Numbers are read as hexadecimal)
 16-PixelTestOOB. Returns 1 for out of bounds pixel tests
 32-Signed Text. This displays numbers as signed integers.
If you want to use bit logic to set or obtain specific bits or info
about the current modes, you can do things like this:
 :Fix →A ;Stores the current mode number
 :Fix or 7 ;Sets the first three modes without changing the rest
 :Fix xor 4;Toggles mode 4 (the ON key one)

Full This is used to set 15MHz mode. Alternatively, if you add a number to
the end:
 Full0 sets 6MHz
 Full1 sets 15MHz
 Full2 toggles the speed
15MHz is only set if it is possible for the calc. This returns 0 if the
previous speed setting was 6MHz, 1 if it was 15MHz.

Output(This is used to change the font. The syntax is:
 -Output(0 will change to the default 4x6 font.
 -Output(1 will change to the variable width font.
 -Output(2 will allow you to use the 4x6 font at pixel coordinates
 -Output(3,font will let you use Omnicalc or BatLib styled fonts.
Adding another argument to the first three will allow you to choose
your own custom fontset. The argument simply points to the start of the
fontset.
The output is a pointer to the fontset (custom or standard set)
For Output(3, remember that Omnicalc font data starts at an offset of

11. So if you have a font called BOLD, you would do:
 :Output(3,11+Get("EBOLD

Binary Lesson!
This document was designed to explain the basics of Decimal (our number system),
Hexadecimal (base16, the ASM number system), and binary (machine code, 0's and
1's). Again, this is going to be very basic. Check the internet if you want to
learn more.
Converting from Dec to Hex:
 1) Divide the number by 16. The remainder is the first number. If it is 0 to 9,
 just keep that. If it is 10 to 15, use letters A to F.
 2) If the number is 16 or larger, still, divide by 16.
 3) Repeat step 1 and 2 until finished.
Here is an example of 32173 converted to Hex:
32173/16= 2010 13/16 Remainder=13 “D”
2010/16= 125 10/16 Remainder=10 “A”
125/16= 7 13/16 Remainder=13 “D”
7/16= 7/16 Remainder=7 “7”
So the number is 7DADh
Converting from Hex to Dec:
I will start this with an example of 731h:
1*16^0 1
3*16^1 48
7*16^2 1792
Add them all up to get 1841. Did you see the pattern with the 16^n?
Binary.
Converting to and from binary is pretty similar. Just replace all the 16's with 2's
and you will have it.
Octal.
Replace all the 16's with 8's.
Other Bases.
Replace the 16's with whatever number you want.

Here is some cool knowledge for spriting. Each four binary digits represents one
hexadecimal digit. For example:
00110101 corresponds to 35. This makes it super easy to convert a sprite which is
binary to hexadecimal! You only need the first 16 digits, so here you go:
0000 = 0 0100 = 4 1000 = 8 1100 = C

0001 = 1 0101 = 5 1001 = 9 1101 = D

0010 = 2 0110 = 6 1010 = A 1110 = E

0011 = 3 0111 = 7 1011 = B 1111 = F

Ports Lesson
To use most of the usable ports, you will need a pretty good knowledge of how

they work. Here are a few of the more useful ones:
00-Link Port
Send a byte value from 0 to 3 and it will be sent over the IO line (using the
serial port)
When reading, use a mask of AND 3. The values are invert from what was sent.
Normally, you should send a value of 0 to this port before exiting the program or
using certain OS routines, if you have changed this port. Grammer automatically
does this, though.
01-Key Port
Grammer uses this to read for key presses.
16-LCD Command Port
If you know how to use this, you can change the z-address, word mode, contrast, and
other things. Grammer can do most of these. Read this and bit 5 tells whether the
LCD is on or off. Write 2 to turn the LCD off, 3 to turn it on. The calculator will
still be on, though, and the programs will still be executing.
69-Timer 0
You cannot write to this, but reading gives you the lower 8 bits of the timer.
70-Timer 1
You can not write to this, but reading this gives you the next 8 bits of the timer.
71-Timer 2
You can not write to this, but reading this gives you the next 8 bits of the timer.
72-Timer 3
Reading this gives you the upper 8 bits of the timer.

Charts
Key Codes

You can use this as a guide to the key values ouput by getKey in Grammer. For
example, Clear=15

/ TI-84 Plus Silver Edition \
| Texas Instruments |

_ _ _ _ _ _ _ _ _ _		
/ 5 3 \ / 5 2 \ / 5 1 \ / 5 0 \ / 4 9 \		
_		
_ _ _ _ _ _ __	4	__
/ 5 4 \ / 5 5 \ / 5 6 \	2_ _3	
_ _ _ _ _ _	1	
/ 4 8 \ / 4 0 \ / 3 2 \		
_ _ _ _ _ _ _ _ _ _		
/ 4 7 \ / 3 9 \ / 3 1 \ / 2 3 \ / 1 5 \		
_ _ _ _ _ _ _ _ _ _		
/ 4 6 \ / 3 8 \ / 3 0 \ / 2 2 \ / 1 4 \		
_ _ _ _ _ _ _ _ _ _		
/ 4 5 \ / 3 7 \ / 2 9 \ / 2 1 \ / 1 3 \		
_ _ _ _ _ _ _ _ _ _		
/ 4 4 \ / 3 6 \ / 2 8 \ / 2 0 \ / 1 2 \		
_ _ _ _ _ _ _ _ _ _		
/ 4 3 \ / 3 5 \ / 2 7 \ / 1 9 \ / 1 1 \		
_ _ _ _ _ _ _ _ _ _		
/ 4 2 \ / 3 4 \ / 2 6 \ / 1 8 \ / 1 0 \		
_ _ _ _ _ _ _ _ _ _		
/ \ / 3 3 \ / 2 5 \ / 1 7 \ / 0 9 \		
\ Brie /

Also, there are the diagonal directions:
5=Down+Left
6=Down+Right
7=Up+Left
8=Up+Right
16=All directions mashed

Data Types

00=Real log(Format is not compatible
01=List A Do not use.
02=Matrix B Symbol Var. Compatible with each other.
03=EQU C Named Var. Compatible with each other.
04=String D
05=Program E
06=ProtProg [F
07=Picture] G
08=GDB { H
09=Unknown } I
10=Unknown Equ J
11=New EQU K
12=Complex -1 L
13=Complex List 2 M
14=Undefined N
15=Window 3 O
16=ZSto (P
17=Table Range) Q
18=LCD 2 R
19=BackUp 3 S
20=App 4 T
21=Appvar 5 U
22=TempProg 6 V
23=Group 7 W

Examples
Here are some code examples to hopefully help you. Some are really short

snippets of code, others are longer pieces.
Movement
Here is code that changes X and Y based on key presses.
 :X+getKey(3
 :min(-getKey(2,95→X ;This is minus, not negative
 :Y+getKey(1
 :min(-getKey(4,63→Y ;This is minus, not negative
Particles
 :.0:
 :0→X→Y
 :Repeat getKey(15
 :R▶Pθ(
 :If getKey(9
 :P▶Rx(Y,X
 :X+getKey(3
 :min(-getKey(2,95→X
 :Y+getKey(1
 :min(-getKey(4,63→Y
 :End
 :Stop
Input
 :.0:Return
 :ClrDraw
 :Text(°"(x,y)=(;ClrDraw sets the cursor to (0,0), so I can use °
 :expr(Input ",)→X ;I get the next input here. The string is ,)
 :Text(,+1 ;This increments the X coordinate.
 :expr(Input ")→Y ;This gets the Y value.
 :Pxl-On(Y,X ;Or whatever you want to do with the coordinates.
 :DispGraph
 :Stop

Timer
 :.0:Return
 :ClrDraw
 :Return→T
 :solve(6,69:+256*solve(6,70
 :→B
 :Repeat getKey(15
 :Text('0,0,-B-expr(T ;negative B minus expr(T
 :DispGraph
 :End
 :Stop

Thanks
I have to give special thanks to Yeongjin Nam for his work on writing a

better tutorial for Grammer and as well Louis Becquey (persalteas) for his work on
writing a french readme/tutorial. Both of them have also made many valuable
suggestions that have helped make Grammer what it is right now. Thanks much!

I would also like to thank the sites that have let me get the word out about
this project, especially Omnimaga and Cemetech.

http://cemetech.net/
http://www.omnimaga.org/index.php

	Intro
	Getting Started
	Number System
	Math
	Pointers and More
	Command List
	Operators
	→
	//
	"
	Ä
	!
	i
	E
	.

	Loops/Conditionals
	If
	If... Then... End
	For(
	Pause If
	While
	Repeat

	Control
	Return
	Goto
	Lbl
	Pause
	prgm
	Func
	Asm(
	AsmPrgm
	ln(
	á

	Input/Computing
	getKey
	Input
	Ans
	expr(
	inString(
	length(
	length('

	solve(command subset
	CopyVar
	CopyDataI
	CopyDataD
	ErrorHandle
	CallError
	WritePort
	ReadPort

	Physics
	R▶Pr(
	R▶Pθ(
	P▶Rx(
	P▶Ry(
	P▶Rx('

	Miscellaneous
	conj(
	conj('

	Drawing
	Grayscale
	Sprites
	Sprite Data
	Sprite Logic
	Pt-On(
	Pt-Off(

	Drawing Commands
	Graphics
	DispGraph
	Circle(
	Pt-Off(
	Pt-On(
	Line('
	Text(
	Line(
	Pxl-On(
	Pxl-Off(
	Pxl-Change(
	ClrDraw
	ClrHome
	Shade(
	Horizontal
	Tangent(
	Disp
	Pt-Change(
	Fill(
	RecallPic
	StorePic

	Data Structures
	Memory Access
	Get(
	(
	{
	int(
	iPart(
	Send(
	[
	IS>(
	Archive
	Unarchive
	Delvar
	sub(
	augment(

	Miscellaneous
	Modes
	Fix Text(
	Fix
	Full
	Output(

	Binary Lesson!
	Ports Lesson
	00-Link Port
	01-Key Port
	16-LCD Command Port
	69-Timer 0
	70-Timer 1
	71-Timer 2
	72-Timer 3

	Charts
	Key Codes
	Data Types

	Examples
	Movement
	Particles
	Input
	Timer

	Thanks

