
 Appendix E: Miscellaneous Tips and Tricks 1

TI-83+ Z80 ASM
for the Absolute

Beginner

APPENDIX E:

• Miscellaneous Tips and Tricks

 Appendix E: Miscellaneous Tips and Tricks 2

MISCELLANEOUS TIPS AND TRICKS

 This appendix contains some tips and tricks that you probably
won’t find in a typical ASM lesson. They are listed from easiest to
hardest, so don’t just hop back and forth between sections!

Optimized Compare and Zero Instructions

• XOR A is smaller and faster than ld a, 0

• OR A is smaller and faster than cp 0

• If you want to see if BC, DE or HL equal zero, you can put one
register in a pair into A and OR it with the other register in the
pair. For example:

LD A, D

OR E

JR Z, Register_DE_Equals_Zero

 Appendix E: Miscellaneous Tips and Tricks 3

• CP only works for register A. However, you can use the following
code to make a CP instruction that works with HL, useful for two-
byte values:

LD DE, 1000 ; 1000, or whatever value you want to

; compare with HL

OR A

SBC HL, DE

ADD HL, DE

 Appendix E: Miscellaneous Tips and Tricks 4

Local Labels

 Sometimes you will have a section of code where you need many,
many labels. This is usually the result of several jr and cp statements.

 cp 1

 jr z, Number1

 cp 2

 call z, Number2

 cp 3

 jr nc, Number3

Number1:

 add a, e

 ret

Number2:

 sub a, 5

 ret

Number3:

 cp 4

 jr z, Number1

 ret

For some people, coming up with a bunch of label names can, at
times, be tedious or time-consuming. As a programmer, perhaps you

 Appendix E: Miscellaneous Tips and Tricks 5

don’t mind making a bunch of label names. However, as an alternative,
you can use underscores to create “local labels.”

 cp 1

 jr z, +_

 cp 2

 call z, ++_

 cp 3

 jr nc, +++_

_

 add a, e

 ret

_

 sub a, 5

 ret

_

 cp 4

 jr z, -_

 ret

As you can see from this example, the number of plus signs tells
the calculator to go forward to the nearest, second nearest, third nearest,
etc. code with an underscore before it. Minus signs tell the calculator to
go backwards.

You can have as many local labels as you want, but no more than 5
plus signs or minus signs put together. (++++++++_ is illegal) Also, +_
and _ mean the same thing. So jr z, +_ is the same thing as jr z, _.

 Appendix E: Miscellaneous Tips and Tricks 6

Jumping to a location stored inside a register

If you have a program or RAM location stored inside of HL, IX or
IY, you can jump to that location. Instead of

jp Decrease_Number_Of_Lives

You can use

 ld HL, Decrease_Number_Of_Lives

 jp (hl)

This is best used when you need to jump to a location that could be
anywhere, for example, when you have to jump to a label that changes
location in RAM from time to time.

 JP (IX) and jp (IY) work the same way.

CPI and CPIR

CPI is a useful instruction for comparing large amounts of data,
especially strings stored in RAM. CPI is like CP A, (HL), except that it
does not affect the carry flag, and HL is increased every time CPI is
used. (This way HL will move to the next byte of data to look at)

Suppose you’ve programmed a game that requires passwords. The
password for the first level is LITTLELAMB. (Example is on next
page)

 Appendix E: Miscellaneous Tips and Tricks 7

LD HL, Password_Entered_By_The_Player ; HL is the start of the data that you want to compare

LD A, ‘L’ ; Putting a letter in single quotes is perfectly acceptable.

CPI

JR NZ, Password_Is_Incorrect

;HL now equals Password_Entered_By_The_Player + 1. CPI does this automatically.

LD A, ‘I’

CPI

JR NZ, Password_Is_Incorrect

LD A, ‘T’

CPI

JR NZ, Password_Is_Incorrect

LD A, ‘T’

CPI

JR NZ, Password_Is_Incorrect

LD A, ‘L’

CPI

JR NZ, Password_Is_Incorrect

LD A, ‘E’

CPI

JR NZ, Password_Is_Incorrect

LD A, ‘L’

CPI

JR NZ, Password_Is_Incorrect

LD A, ‘A’

CPI

JR NZ, Password_Is_Incorrect

LD A, ‘M’

CPI

JR NZ, Password_Is_Incorrect

LD A, ‘B’

CPI

JR NZ, Password_Is_Incorrect

PASSWORD_IS_CORRECT:

 Appendix E: Miscellaneous Tips and Tricks 8

Can you guess how to make this code even shorter? (Hint: LD A,
(DE) is a valid instruction. So is LD A, (BC))

 While CPI is great for comparing large amounts of data, CPIR is
used to search RAM until a single value of your choice is found. (This
is very useful, for example, to find values inside of strings and where
these values occur) When you want to search for a value, put your value
into register A. BC should contain how many bytes to look at before
giving up. (If you want to search and search and search without giving
up, BC should equal 0.) When a value is found before the “give up”
limit, the Z flag is set.

LD HL, Password_Entered_By_The_Player ; HL is the start of the data that you want to compare

LD DE, Password_For_Level_One

LD B, 10 ;There are ten characters to check.

Check_One_Character_Of_Password:

LD A, (DE)

CPI

JR NZ, Password_Is_Incorrect

INC DE

DJNZ Check_One_Character_Of_Password ;Even if one character of the password is correct, we have to check the rest

YES_Password_IS_Correct

Password_For_Level_One:

.db “LITTLELAMB”

 Appendix E: Miscellaneous Tips and Tricks 9

 InStr(is a Microsoft Basic command used to search a string to see
if a smaller string of your choice can be found inside of it. Here’s a Z80
version to see if the string “OTION” appears in the string “DO THE
LOCOMOTION”. It makes great use of both CPI and CPIR.

LD HL, DO_THE_LOCOMOTION_STRING

LD BC, 25 ; If “OTION” is not found within 25 characters, give up.

Search_For_Character_O:

 ld a, ‘O’

 cpir ;Search DO_THE_LOCOMOTION_STRING until the letter “O” is found

 jp po, String_Not_Found ; PO means BC = 0, so give up. PO CANNOT be used with jr.

; If PO is false, the letter O was found. HL now points to the letter after the letter O.

 ld a, ’T’

 cpi

 jr nz, Search_For_Character_O ; If the letter after O is not “T”, then obviously the string “OTION” does not exist

 ; at the particular location

 ld a, ‘I’

 cpi

 jr nz, Search_For_Character_O

 ld a, ‘O’

 cpi

 jr nz, Search_For_Character_O

 ld a, ‘N’

 cpi

 jr z, String_Has_Been_Found

 jr Search_For_Character_O

DO_THE_LOCOMOTION_STRING:

 .db “DO THE LOCOMOTION”

 Appendix E: Miscellaneous Tips and Tricks 10

Accidental 1-byte registers

 As you know, register HL can be split into registers H and L. BC
can be split into B and C. DE can be split into D and E.

 What about IX and IY? You can split them, but that is not what
the designers of the Z80 processor in your calculator intended. The
ability to split these 2-byte registers into separate 1-byte registers came
about as a total accident. This is an advantage and a disadvantage: You
have 4 more 1-byte registers to play with (2 from splitting IX and 2 from
splitting IY), but if you decide you want to do so, your game won’t work
on the Ti-Nspire’s 84+ mode.

 So, HL is split into H and L. BC is split into B and C. IX is split
into IXH and IXL. IY is split into IYH and IYL. (Remember to use IY
with extreme caution, because the operating system uses it!)

 Almost anything you can do with H and L, you can do with IXH,
IXL, IYH and IYL.

 LD B, IXH

 LD IXL, 34

 OR IYH

 ADD A, IYL

 INC IXL

 But not everything can be done with these 1-byte registers. Spasm
will tell you if there’s a problem.

 Appendix E: Miscellaneous Tips and Tricks 11

 These four 1-byte registers can be helpful, but they are slower than
using other 1-byte registers. So even if you don’t care about lack of
Nspire compatability, you should still save these registers for instances
such as when all other 1-byte registers are tied up.

Using Z, NZ, C and NC to your advantage

 Did you know that you can force the Z and C flags to set or reset
themselves? As you know, the Z flag is set if a calculation results in an
answer of “zero” and it is reset otherwise. Similarly, the carry flag is set
if there’s a register overflow, otherwise it’s reset.

 But sometimes you might want to use these flags to represent some
other condition. For example, in a program I wrote, I wanted to know if
the user entered a 4-digit negative number. Even though the C flag was
not created to detect negative or positive numbers, I used it for such a
purpose. I forced the C flag to set itself if the user entered a negative
number, and I forced the C flag to reset itself if the user entered a
positive number. Then I would jump to one of two places depending on
the value of the flag:

 jr c, Take_Care_Of_Negative_Number

 jr nc, Take_Care_Of_Positive_Number

 At least half of the ASM instructions will do things to the Z and C
flags, so if you want to force values, make sure that proceeding lines of
code will not mess around with the flags until you are ready to tell the
calculator what to do depending on flag values.

 Appendix E: Miscellaneous Tips and Tricks 12

 To force the C flag to C, use the instruction SCF.

 To force the C flag to NC, use the instruction OR A. This will not
destroy whatever is in register A.

 To force the Z flag to Z, use the instruction CP A. This will not
destroy whatever is in register A.

 To force the Z flag to NZ, you unfortunately have to destroy
whatever is inside a register. If you don’t need the value stored in
register A, use OR 1. Otherwise, pick a register, set it to 0, and then use
INC on it.

