
TI-83+ Z80 ASM
for the Absolute

Beginner

LESSON FIVE:

• The Translation of the 1 + 5 Program

• Labels, Variables, and How the
Calculator Works with Them

 Lesson Four: The Translation of the 1 + 5 Program; Labels, Variables, and How the Calculator Works

with Them

 2

THE TRANSLATION OF THE 1 + 5
PROGRAM

I would like you to remember, for this lesson, that when you write
an ASM program, it is translated into a bunch of numbers that the
calculator reads, and the calculator reads these numbers and translates
them into instructions to execute. Feel free to review Lesson #1 if you
need to. Also remember that the program is stored in ram starting at
RAM address 40339.

Most ASM tutorials do not tell you what this translated program
looks like. While I don’t argue the methods used in those tutorials, I
don’t agree that it’s unnecessary to understand the translation of an ASM
program. It’s extremely easy to see the translation of an ASM program,
and it’s one of your first steps to see HOW something works. And
believe me: if you understand how your program works and why, you
get awesome calculator games like Desolate and Wolfenstein.
Therefore, throughout this lesson, and perhaps from time to time on
other lessons, I’ll show you some ASM programs translated into
numbers.

Like I said, this part is not difficult. Just remember that these
lessons are for the absolute beginner, so I’m putting this up knowing you
as the reader can handle it. Besides, unlike a the translation of a simple
Visual Basic program or even a simple C++ program, the translation of a
simple Ti-83+ ASM program takes only, oh, maybe 25-30 bytes.

The translation for the first ASM program you wrote is on page 4.
Some of the translations I will explain immediately, others I will explain
later, and some of the translations do not require explanation. By the
way, a blue box means a number that takes two bytes, aka a word.

 Lesson Four: The Translation of the 1 + 5 Program; Labels, Variables, and How the Calculator Works

with Them

 3

 Lesson Four: The Translation of the 1 + 5 Program; Labels, Variables, and How the Calculator Works

with Them

 4

ASM RAM ADDRESS
ON CALCULATOR

TRANSLATION, IN
DECIMAL NUMBERS

#include “ti83plus.inc”

.org 40339

.db t2ByteTok, tAsmCmp 40339 187 109

B_CALL _ClrLCDFull 40341 239 17728

ld a, 1 40344 62 1

add a, 5 40346 198 5

ld h, 0 40348 38 0

ld l, a 40350 111

B_CALL _DispHL 40351 239 17671

B_CALL _getKey 40354 239 18802

B_CALL _ClrLCDFull 40357 239 17728

ret 40360 201

 For starters, notice that the first two lines aren’t translated. The
first line, which tells the calculator to include the file “ti83plus.inc,” is
not translated, because it contains code that is only put in the program
when needed, and it tells SPASM exactly how to put it in the calculator.
In other words, SPASM puts in the program what is needed, when
needed, from ti83plus.inc…SPASM does not need to put in the whole
file.

 Lesson Four: The Translation of the 1 + 5 Program; Labels, Variables, and How the Calculator Works

with Them

 5

 I will explain later in this lesson why .org 40339 is not
translated/compiled, but for right now, the main reason is the line is a
reference for SPASM, not for the calculator.

 _ClrLCDFull, _getKey, _DispHL, t2ByteTok and tAsmCmp are all
constants. Since _ClrLCDFull is a constant equal to 17728, SPASM
replaces _ClrLCDFull with the number 17728 wherever _ClrLCDFull is
located. Similarly, t2ByteTok is a constant equal to 187, so SPASM saw
t2ByteTok and translated it to the number 187.

_ClrLCDFull, _getKey, and _DispHL are constants referring to
where these instructions needed by the ASM program are located. They
are ROM addresses, not RAM addresses. The instructions that ASM
programs can access are located in ROM as part of the Ti-83+ operating
system.

 Notice that when you choose a value to load into A or H, the
translation is equal to that value? Pretty sweet, huh? But not surprising.

 Now to tell you about .db. .Db is used to enter data for the
calculator. When you use .db, you’re entering exact data that you want,
so SPASM does nothing to alter the data. For instance, if you type in
.db 1, 2, 3, 4, 5 and 6, the translated program contains, in decimal
numbers, 1 2 3 4 5 6 in that order: nothing altered, nothing changed. All
ASM programs require the numbers 187 and 109 to identify them as
ASM programs, so .db tells SPASM that these numbers should be in the
translated program EXACTLY as the numbers 187 and 109.

 However, there is one exception to this rule, which you’ll learn
about in a later lesson.

 Lesson Four: The Translation of the 1 + 5 Program; Labels, Variables, and How the Calculator Works

with Them

 6

Exercise: Translate the following program into numbers. The answer is
on the next page.

Hint: Remember that Number_Seven and Number_Four are constants,
since they use the word .equ. What does Spasm do with constants?

#include “ti83plus.inc”

.org 40339

.db t2ByteTok, tAsmCmp

NumberSeven .equ 7

NumberFour .equ 4

B_CALL _ClrLCDFull

 ld a, NumberSeven

; Solve the problem 7 + 4

 add a, NumberFour

 ld h,0

 ld l, a

 B_CALL _DispHL

 B_CALL _getKey

B_CALL _ClrLCDFull

 ret

 Lesson Four: The Translation of the 1 + 5 Program; Labels, Variables, and How the Calculator Works

with Them

 7

ANSWER:

ASM RAM ADDRESS
ON CALCULATOR

TRANSLATION, IN
DECIMAL NUMBERS

#include “ti83plus.inc”

.org 40339

NumberSeven .equ 7

NumberFour .equ 4

.db t2ByteTok, tAsmCmp 40339 187 109

B_CALL _ClrLCDFull 40341 239 17728

ld a, NumberSeven 40344 62 7

add a, NumberFour 40346 198 4

ld h, 0 40348 38 0

ld l, a 40350 111

B_CALL _DispHL 40351 239 17671

B_CALL _getKey 40354 239 18802

B_CALL _ClrLCDFull 40357 239 17728

ret 40360 201

 Lesson Four: The Translation of the 1 + 5 Program; Labels, Variables, and How the Calculator Works

with Them

 8

LABELS, VARIABLES, AND HOW THE
CALCULATOR WORKS WITH THEM

 As a Ti-Basic programmer, you understand that Labels are used to
mark places where your program needs to jump to from time to time.
You also understand that Variables are used to hold values that you need
saved. But do you ever get annoyed that Labels can only be two
letters/numbers long and variables are also somewhat limited?

 In ASM programming, names for labels and variables can be as big
as you want. However, there are two rules that apply to SPASM when
applying variable names:

1. Labels and variables cannot start with a number

2. Labels and variables can only contain numbers, letters and
underscores.

As a good rule of thumb, you should include a colon at the end of
your labels and variables. It is not required, but it is good practice. Here
are some examples of valid labels:

FunctionNumberOne:

Function_Number_One:

Function_Number1:

 And, here are some examples of invalid labels and variables:

2Function1:

Function#1:

 Lesson Four: The Translation of the 1 + 5 Program; Labels, Variables, and How the Calculator Works

with Them

 9

We’ll start by working with labels. You’ll learn later how to tell
the calculator when to jump and when not to jump, but for right now, I’ll
be teaching you how to tell the calculator to “goto” your label no matter
what. There are two ways to do this, and it depends on how far away
you want to jump.

JR is an abbreviation for “Relative jump.” You can use JR
whenever the distance to where you want to jump is short. Spasm will
tell you when you cannot use JR by saying “Relative jump is over 128
bytes.” In other words, when Spasm is translating your program, if the
label is more than 128 bytes away, you cannot use JR.

In which case you use JP, which is a “jump.” This allows much
bigger jumps. In fact, the jumps allowed are so big that you can even
jump outside your program.

There’s a big, big difference between JR and JP which will be
described later in this lesson. However, some smaller differences are,
JR takes fewer bytes and, for the most part, is faster than JP. You
should use JR every time you need a jump; if you can’t use it, Spasm
will tell you, and you can change it to JP in a matter of moments.

 Lesson Four: The Translation of the 1 + 5 Program; Labels, Variables, and How the Calculator Works

with Them

 10

Here’s an ASM program for you to write. By the way, if you
decide to just copy and paste the program (which I don’t recommend), at
least rewrite the first #include line. If you just copy and paste it, chances
are Spasm won’t work correctly.

 What happened here? Notice the ret after add a, 5? The program
ended early! Now, don’t give me crud such as “Oh, we can easily fix
that by just removing the ret statement!” That is very true, but just bear
with me. We’re going to take a different approach. Take this program,

#include “ti83plus.inc”

.org 40339

.db t2ByteTok, tAsmCmp

 B_CALL _ClrLCDFull

 ld a, 2

; Solve the problem 2 + 5

 add a, 5

 ret

 ld h,0

 ld l, a

 B_CALL _DispHL

 B_CALL _getKey

B_CALL _ClrLCDFull

 ret

 Lesson Four: The Translation of the 1 + 5 Program; Labels, Variables, and How the Calculator Works

with Them

 11

and add the lines highlighted in blue. Then run it, and it should work
correctly:

Now, I would like to show you how THIS program translates so
you can see how JR works. This is important, believe me.

#include “ti83plus.inc”

.org 40339

.db t2ByteTok, tAsmCmp

 B_CALL _ClrLCDFull

 ld a, 2

; Solve the problem 2 + 5

 add a, 5

 jr Continue_Program

 ret

Continue_Program:

 ld h,0

 ld l, a

 B_CALL _DispHL

 B_CALL _getKey

B_CALL _ClrLCDFull

 ret

 Lesson Four: The Translation of the 1 + 5 Program; Labels, Variables, and How the Calculator Works

with Them

 12

ASM RAM ADDRESS
ON CALCULATOR

TRANSLATION, IN
DECIMAL NUMBERS

#include “ti83plus.inc”

.org 40339

.db t2ByteTok, tAsmCmp 40339 187 109

B_CALL _ClrLCDFull 40341 239 17728

ld a, 2 40344 62 2

add a, 5 40346 198 5

jr Continue_Program 40348 24 1

ret 40350 201

Continue_Program:

ld h, 0 40351 38 0

ld l, a 40353 111

B_CALL _DispHL 40355 239 17671

B_CALL _getKey 40357 239 18802

B_CALL _ClrLCDFull 40360 239 17728

ret 40363 201

Notice that the label is not translated! The calculator uses a
different approach than what you might expect. If you notice, ret is only
one byte of instructions when translated. So, jr tells the calculator to
skip one byte of instructions, hence the number “1” in the translation.

 Lesson Four: The Translation of the 1 + 5 Program; Labels, Variables, and How the Calculator Works

with Them

 13

The program “jumps”, “skips” over one byte of instructions. Since ret is
only one byte of instructions when translated, ret is skipped.

Let’s replace jr with jp. Then notice there’s a change:

ASM RAM ADDRESS
ON CALCULATOR

TRANSLATION, IN
DECIMAL NUMBERS

#include “ti83plus.inc”

.org 40339

.db t2ByteTok, tAsmCmp 40339 187 109

B_CALL _ClrLCDFull 40341 239 17728

ld a, 2 40344 62 2

add a, 5 40346 198 5

jp Continue_Program 40348 195 40352

ret 40351 201

Continue_Program:

ld h, 0 40352 38 0

ld l, a 40354 111

B_CALL _DispHL 40356 239 17671

B_CALL _getKey 40358 239 18802

B_CALL _ClrLCDFull 40361 239 17728

ret 40364 201

 Lesson Four: The Translation of the 1 + 5 Program; Labels, Variables, and How the Calculator Works

with Them

 14

This time, the jump is not translated as “how far to jump.” It is
translated as “where to jump.” Instead of being told to skip a number of
bytes, the calculator is told the RAM address to jump to.

Now, I can tell you why .org is not translated, but why it is needed
as a reference for Spasm. As was stated earlier, the ASM program is run
from RAM address 40339 of the calculator. However, Spasm doesn’t
know that. It assumes that the address starts at 0! So suppose you did
not tell Spasm that the calculator starts the program at 40339. Then,
when jp is translated, it would read as 195 13, meaning it would tell
the calculator to jump to address 13, not address 40352. Your program
would not work. Try it! Remove the line .org 40339, and run the
program on an emulator. The answer to the problem 2 + 5 is not
displayed.

Exercise:

 Before the label Continue_Program:, add three more “rets.” For
example:

jr Continue_Program

ret

ret

ret

ret

Continue_Program:

 Now translate the program using jp and the program using jr.
Answers are on the next pages: jr on the first page, and jp on the second.

 Lesson Four: The Translation of the 1 + 5 Program; Labels, Variables, and How the Calculator Works

with Them

 15

ANSWER FOR JR:

ASM RAM ADDRESS
ON CALCULATOR

TRANSLATION, IN
DECIMAL NUMBERS

#include “ti83plus.inc”

.org 40339

.db t2ByteTok, tAsmCmp 40339 187 109

B_CALL _ClrLCDFull 40341 239 17728

ld a, 2 40344 62 2

add a, 5 40346 198 5

jr Continue_Program 40348 24 4

ret 40350 201

ret 40351 201

ret 40352 201

ret 40353 201

Continue_Program:

ld h, 0 40354 38 0

ld l, a 40356 111

B_CALL _DispHL 40358 239 17671

B_CALL _getKey 40360 239 18802

B_CALL _ClrLCDFull 40363 239 17728

ret 40366 201

 Lesson Four: The Translation of the 1 + 5 Program; Labels, Variables, and How the Calculator Works

with Them

 16

ANSWER FOR JP:

ASM RAM ADDRESS
ON CALCULATOR

TRANSLATION, IN
DECIMAL NUMBERS

#include “ti83plus.inc”

.org 40339

.db t2ByteTok, tAsmCmp 40339 187 109

B_CALL _ClrLCDFull 40341 239 17728

ld a, 2 40344 62 2

add a, 5 40346 198 5

jp Continue_Program 40348 195 40354

ret 40350 201

ret 40351 201

ret 40352 201

ret 40353 201

Continue_Program:

ld h, 0 40354 38 0

ld l, a 40356 111

B_CALL _DispHL 40358 239 17671

B_CALL _getKey 40360 239 18802

B_CALL _ClrLCDFull 40363 239 17728

ret 40366 201

 Lesson Four: The Translation of the 1 + 5 Program; Labels, Variables, and How the Calculator Works

with Them

 17

For the last part of this lesson, we will talk about variables.
Variables are, of course, stored in RAM to retain more permanent
storage. Thus, variables can be stored anywhere in RAM that is safe to
use. For now, since your ASM program is stored in RAM, you will
store variables as part of the program. Since your variable is part of the
program while it is running, nothing except your program can access
that part of RAM, so your variable is safe if you do not mess with it
carelessly.

To store a variable, you use a combination of a label and .db.
Using .db, you specify the value you wish the variable to hold at the
beginning of the program. This is usually zero. However, let’s use an
example of a number of lives being equal to 5.

Number_Of_Lives:

 .db 5

 To understand how to access this, remember that the variable is
stored in RAM. Therefore, you access the variable using a RAM
address. Just like labels pertain to a particular RAM address (and jp tells
the calculator to jump to that particular RAM address), variable names
pertain to particular RAM addresses. I will tell you about accessing the
variable in a moment, but it is very important you remember that the
value 5 is stored in RAM and accessed by the address where it is
located. On the next page is a small program, and its translation:

 Lesson Four: The Translation of the 1 + 5 Program; Labels, Variables, and How the Calculator Works

with Them

 18

ASM RAM ADDRESS
ON CALCULATOR

TRANSLATION, IN
DECIMAL NUMBERS

#include “ti83plus.inc”

.org 40339

.db t2ByteTok, tAsmCmp 40339 187 109

B_CALL _ClrLCDFull 40341 239 17728

ret 40343 201

Number_Of_Lives:

.db 5 40344 5

So Number_Of_Lives pertains to RAM address 40344. Inside
40344 is the number of lives.

 There are many, many different ways to access this value. For
now, use the statement ld a, (variable name). You always use
parentheses when you want to access whatever is inside of RAM at a
particular address. So by using the statement ld a, (Number_Of_Lives),
you are telling the calculator to access whatever data is in RAM address
40344. Ld a, (Number_Of_Lives) is the same as ld a, (40344). So now
a contains the value 5.

On the next page is a program that demonstrates this.

 Lesson Four: The Translation of the 1 + 5 Program; Labels, Variables, and How the Calculator Works

with Them

 19

 That recalls a variable. To store a value to a variable (for right
now), register A must contain the value that you want to store in the
variable. Then use ld (Variable), A. On the next page is an example. It
will store the answer to the addition problem 5 + 7, so that you do not
lose the answer to the problem.

#include “ti83plus.inc”

.org 40339

.db t2ByteTok, tAsmCmp

 B_CALL _ClrLCDFull

 ld a, (Number_Two)

; Solve the problem 2 + 5

 add a, 5

 ld h,0

 ld l, a

 B_CALL _DispHL

 B_CALL _getKey

B_CALL _ClrLCDFull

 ret

Number_Two:

 .db 2

 Lesson Four: The Translation of the 1 + 5 Program; Labels, Variables, and How the Calculator Works

with Them

 20

You have enough now to start your project ASM Gorillas, so in the next
lesson we will begin to work on it.

#include “ti83plus.inc”

.org 40339

.db t2ByteTok, tAsmCmp

 B_CALL _ClrLCDFull

 ld a, 5

; Solve the problem 5 + 7

 add a, 7

 ld (Addition_Answer), a

;Now recall and display the answer.

 ld a, (Addition_Answer)

ld h,0

 ld l, a

 B_CALL _DispHL

 B_CALL _getKey

B_CALL _ClrLCDFull

 ret

Addition_Answer:

 .db 0

