T1-83+ Z80 ASM
for the Absolute
Beginner

LESSON FIVE:

e The Trandation of the 1 + 5 Program

e Labdls, Variables, and How the
Calculator Works with Them

Lesson Four: The Translation of the 1 + 5 Program; Labels, Variables, and How the Calculator Works
with Them

THE TRANSLATIONOFTHE 1+5
PROGRAM

| would like you to remember, for this lesson, théien you write
an ASM program, it is translated into a bunch ahbers that the
calculator reads, and the calculator reads theswears and translates
them into instructions to execute. Feel free toen@ Lesson #1 if you
need to. Also remember that the program is storedm starting at
RAM address 40339.

Most ASM tutorials do not tell you what this traaigld program
looks like. While | don’'t argue the methods usedhiose tutorials, |
don’t agree that it's unnecessary to understandramslation of an ASM
program. It'sextremely easy to see the translation of an ASM program,
and it's one of your first steps to see HOW somnmgglworks. And
believe me: if you understand how your program wahkd why, you
get awesome calculator games lixesolateandWolfenstein
Therefore, throughout this lesson, and perhaps fno to time on
other lessons, I'll show you some ASM programsdiaied into
numbers.

Like | said, this part is not difficult. Just rember that these
lessons are for the absolute beginner, so I'mmyttiis up knowing you
as the reader can handle it. Besides, unlike &rdnslation of a simple
Visual Basic program or even a simple C++ progréma translation of a
simple Ti-83+ ASM program takes only, oh, maybe3Pbhbytes.

The translation for the first ASM program you wredeon page 4.
Some of the translations | will explain immediatedyhers | will explain
later, and some of the translations do not recgimanation. By the
way, a blue box means a number that takes two bgkesa word.

Lesson Four: The Translation of the 1 + 5 Program; Labels, Variables, and How the Calculator Works
with Them

T THINKE T HAVE
THAT WOMEN - TALK ES EANS MAYBE.
ALL FiQuRED OUT MAYBE MEANS NO.

/ J

TRY HARDER 0 AM T

/ ﬂitﬂr? Yes

n Lesson Four: The Translation of the 1 + 5 Program; Labels, Variables, and How the Calculator Works
with Them

ASM RAM ADDRESS TRANSLATION, IN
ON CALCULATOR | DECIMAL NUMBERS
#include “ti83plus.inc”
.org 40339
.db t2ByteTok, tAsmCmp 40339 187 109
B_CALL _CIrLCDFull 40341 239 17728
da, 1 40344 62 1
add a, 5 40346 198 5
Id h, O 40348 38 0
Id 1, a 40350 111
B_CALL _DispHL 40351 239 17671
B _CALL _getKey 40354 239 18802
B_CALL _CIrLCDFull 40357 239 17728
ret 40360 201

For starters, notice that the first two lines &rganslated. The
first line, which tells the calculator to includeetfile “ti83plus.inc,” is
not translated, because it contains code thatlyspart in the program
when needed, and it tells SPASM exactly how toifpatthe calculator.
In other words, SPASM puts in the program whateisded, when
needed, from ti83plus.inc...SPASM does not need torpthe whole
file.

Lesson Four: The Translation of the 1 + 5 Program; Labels, Variables, and How the Calculator Works
with Them

| will explain later in this lesson why .org 403390t
translated/compiled, but for right now, the maiasen is the line is a
reference for SPASM, not for the calculator.

_CIrLCDFull, _getKey, DispHL, t2ByteTok and tAsmCrape all
constants. Since _CIrLCDFull is a constant equdlA728, SPASM
replaces _CIrLCDFull with the number 17728 wherev@lrLCDFull is
located. Similarly, t2ByteTok is a constant eqiwal87, so SPASM saw
t2ByteTok and translated it to the number 187.

_CIrLCDFull, _getKey, and _DispHL are constanterahg to
where these instructions needed by the ASM prognatocated. They
are ROM addresses, not RAM addresses. The instngdhat ASM
programs can access are located in ROM as parnedfit83+ operating
system.

Notice that when you choose a value to load intar Al, the
translation is equal to that value? Pretty swaat,? But not surprising.

Now to tell you about .db. .Db is used to entsiador the
calculator. When you use .db, you're entering egata that you want,
so SPASM does nothing to alter the data. For me&taif you type in
.db 1, 2, 3, 4, 5 and 6, the translated prograntais, in decimal
numbers, 1 2 34 5 6 in that order: nothing altenething changed. All
ASM programs require the numbers 187 and 109 tatiiyehem as
ASM programs, so .db tells SPASM that these numleosiid be in the
translated program EXACTLY as the numbers 187 &t 1

However, there is one exception to this rule, Whiou’ll learn
about in a later lesson.

n Lesson Four: The Translation of the 1 + 5 Program; Labels, Variables, and How the Calculator Works
with Them

Exercise: Translate the following program into nem# The answer is
on the next page.

Hint: Remember that Number_Seven and Number_Feucarstants,
since they use the word .equ. What does Spasmth@onstants?

#include “ti83plus.inc”
.org 40339
.db t2ByteTok, tAsmCmp

NumberSeven .equ 7

NumberFour .equ 4

B_CALL _CIrLCDFull

Id a, NumberSeven
; Solve the problem 7 + 4
add a, NumberFour

Id h,0
Id |, a

B_CALL _DispHL
B_CALL _getKey
B_CALL _CIrLCDFull

ret

Lesson Four: The Translation of the 1 + 5 Program; Labels, Variables, and How the Calculator Works
with Them

ANSWER:

ASM RAM ADDRESS TRANSLATION, IN
ON CALCULATOR | DECIMAL NUMBERS

#include “ti83plus.inc”

.org 40339

NumberSeven .equ 7

NumberFour .equ 4

.db t2ByteTok, tAsmCmp 40339 187 109
B_CALL _CIrLCDFull 40341 239 17728
|d a, NumberSeven 40344 62 7
add a, NumberFour 40346 198 4
Id h, O 40348 383 0
Id 1, a 40350 111
B_CALL _DispHL 40351 239 (17671
B_CALL _getKey 40354 239 18802
B_CALL _CIrLCDFull 40357 239 17728

ret 40360 201

n Lesson Four: The Translation of the 1 + 5 Program; Labels, Variables, and How the Calculator Works
with Them

LABELS, VARIABLES, AND HOW THE
CALCULATOR WORKSWITH THEM

As a Ti-Basic programmer, you understand that lsahee used to
mark places where your program needs to jump to fime to time.
You also understand that Variables are used tovuallees that you need
saved. But do you ever get annoyed that Label®nnbe two
letters/numbers long and variables are also somdimmged?

In ASM programming, names for labels and variabkas be as big
as you want. However, there are two rules thalyappSPASM when
applying variable names:

1. Labels and variables cannot start with a number

2. Labels and variables can only contain numbersrietnd
underscores.

As a good rule of thumb, you should include a cabthe end of
your labels and variables. Itis not required,ibig good practice. Here
are some examples of valid labels:

FunctionNumberOne:
Function_Number_One:
Function_Numberl:
And, here are some examples of invalid labelsvamn@bles:
2Functionl:

Function#1:

n Lesson Four: The Translation of the 1 + 5 Program; Labels, Variables, and How the Calculator Works
with Them

We'll start by working with labels. You'll learrater how to tell
the calculator when to jump and when not to jumy,for right now, Ill
be teaching you how to tell the calculator to “gotour label no matter
what. There are two ways to do this, and it depardhow far away
you want to jump.

JR is an abbreviation for “Relative jump.” You aase JR
whenever the distance to where you want to junghet. Spasm will
tell you when you cannot use JR by saying “Relgtivep is over 128
bytes.” In other words, when Spasm is translagimgy program, if the
label is more than 128 bytes away, you cannot BRse J

In which case you use JP, which is a “jump.” Tdllews much
bigger jumps. In fact, the jumps allowed are gpthat you can even
jump outside your program.

There’s a big, big difference between JR and JRhwill be
described later in this lesson. However, some lemdifferences are,
JR takes fewer bytes and, for the most part, tefdasan JP. You
should use JR every time you need a jump; if youtaese it, Spasm
will tell you, and you can change it to JP in ateabf moments.

Lesson Four: The Translation of the 1 + 5 Program; Labels, Variables, and How the Calculator Works
with Them

Here’'s an ASM program for you to write. By the wéyou
decide to just copy and paste the program (whabdnit recommend), at
least rewrite the first #include line. If you jusipy and paste it, chances
are Spasm won’t work correctly.

#include “ti83plus.inc”
.org 40339

.db t2ByteTok, tAsmCmp

B_CALL _CIrLCDFull
Id a, 2

; Solve the problem 2 + 5
add a, 5
ret
Id h,0
Id 1, a

B_CALL DispHL

B_CALL _getKey
B_CALL _CIrLCDFull

ret

What happened here? Notice tieeafter add a, 5? The program
ended early! Now, don’t give me crud such as “@h,can easily fix
that by just removing the ret statement!” Thatesy true, but just bear
with me. We’'re going to take a different approadiake this program,

Lesson Four: The Translation of the 1 + 5 Program; Labels, Variables, and How the Calculator Works
with Them

and add the lines highlighted in blue. Then ruanid it should work
correctly:

#include “ti83plus.inc”
.org 40339

.db t2ByteTok, tAsmCmp

B_CALL _CIrLCDFull
Id a, 2

; Solve the problem 2 + 5
add a, 5
jr Continue_Program

ret

Continue_Program:

Id h,0
Id |, a

B_CALL _DispHL
B_CALL _getKey
B_CALL _CIrLCDFull

ret

Now, | would like to show you how THIS program tsdeites so
you can see how JR works. This is important, belm®e.

with Them

Lesson Four: The Translation of the 1 + 5 Program; Labels, Variables, and How the Calculator Works

ASM

RAM ADDRESS
ON CALCULATOR

TRANSLATION, IN
DECIMAL NUMBERS

#include “ti83plus.inc”

.org 40339
.db t2ByteTok, tAsmCmy 40339 187 109
B_CALL _CIrLCDFull 40341 239 17728
Id a, 2 40344 62 2
add a, 5 40346 198 5
jr Continue_Program 40348 24 1
ret 40350 201
Continue_Program:
Id h, O 40351 383 0
Id 1, a 40353 111
B_CALL _DispHL 40355 239 17671
B_CALL _getKey 40357 239 18802
B_CALL _CIrLCDFull 40360 239 17728
ret 40363 201

Notice that the label is not translated! The clalimr uses a
different approach than what you might expectyoli notice, ret is only
one byte of instructions when translated. Sceljs the calculator to
skip one byte of instructions, hence the numberifilthe translation.

with Them

The program “jumps”,

Lesson Four: The Translation of the 1 + 5 Program; Labels, Variables, and How the Calculator Works

skips” over one byte of ingttions. Since ret is
only one byte of instructions when translatedjgekipped.

Let’s replace jr with jp. Then notice there’s ange:

ASM

RAM ADDRESS
ON CALCULATOR

TRANSLATION, IN

DECIMAL NUMBERS

#include “ti83plus.inc”

.org 40339
.db t2ByteTok, tAsmCmp 40339 187 109
B_CALL _CIrLCDFull 40341 239 17728
Id a, 2 40344 62 2
add a, 5 40346 198 5
jp Continue_Program 40348 195 40352
ret 40351 201
Continue_Program:
Id h, O 40352 383 0
Id 1, a 40354 111
B_CALL DispHL 40356 239 17671
B_CALL _getKey 40358 239 18802
B_CALL _CIrLCDFull 40361 239 17728
ret 40364 201

Lesson Four: The Translation of the 1 + 5 Program; Labels, Variables, and How the Calculator Works
with Them

This time, the jJump is not translated as “how Gajump.” It is
translated asWwhereto jump.” Instead of being told to skip a numbér
bytes, the calculator is told the RAM address taguo.

Now, | can tell you why .org is not translated, tdiy it is needed
as a reference for Spasm. As was stated eaH@A$SM program is run
from RAM address 40339 of the calculator. Howe®rasm doesn’t
know that. It assumes that the address startis SoGuppose you did
not tell Spasm that the calculator starts the @ogat 40339. Then,
when jp is translated, it would read as 195 mM&aning it would tell
the calculator to jump to address h8t address 40352. Your program
would not work. Try it! Remove the line .org 4@3&nd run the
program on an emulator. The answer to the prolend is not
displayed.

Exercise:

Before the label Continue_Program:, add three rfrets.” For
example:

jr Continue_Program
ret

ret

ret

ret
Continue_Program:

Now translate the program using jp and the programg jr.
Answers are on the next pages: jr on the first pagé jp on the second.

Lesson Four: The Translation of the 1 + 5 Program; Labels, Variables, and How the Calculator Works
with Them

ANSWER FOR JR:

ASM RAM ADDRESS TRANSLATION, IN
ON CALCULATOR | DECIMAL NUMBERS

#include “ti83plus.inc”

.org 40339
.db t2ByteTok, tAsmCmp 40339 187 109
B_CALL _CIrLCDFull 40341 239 17728
Id a, 2 40344 62 2
add a, 5 40346 198 5
jr Continue_Program 40348 24 4
ret 40350 201
ret 40351 201
ret 40352 201
ret 40353 201

Continue_Program:

ld h, O 40354 38 0
Id 1, a 40356 111
B_CALL _DispHL 40358 239 17671
B_CALL _getKey 40360 239 18802
B_CALL _CIrLCDFull 40363 239 17728

ret 40366 201

Lesson Four: The Translation of the 1 + 5 Program; Labels, Variables, and How the Calculator Works
with Them

ANSWER FOR JP:

ASM RAM ADDRESS TRANSLATION, IN
ON CALCULATOR | DECIMAL NUMBERS

#include “ti83plus.inc”

.org 40339
.db t2ByteTok, tAsmCmp 40339 187 109
B_CALL _CIrLCDFull 40341 239 17728
Id a, 2 40344 62 2
add a, 5 40346 198 5
jp Continue_Program 40348 195 40354
ret 40350 201
ret 40351 201
ret 40352 201
ret 40353 201

Continue_Program:

ld h, O 40354 38 0
Id 1, a 40356 111
B_CALL _DispHL 40358 239 17671
B_CALL _getKey 40360 239 18802
B_CALL _CIrLCDFull 40363 239 17728

ret 40366 201

Lesson Four: The Translation of the 1 + 5 Program; Labels, Variables, and How the Calculator Works
with Them

For the last part of this lesson, we will talk abweariables.
Variables are, of course, stored in RAM to retamrenpermanent
storage. Thus, variables can be stored anywhd®&M that is safe to
use. For now, since your ASM program is storeBAM, you will
store variables as part of the program. Since yatiable is part of the
program while it is running, nothing except youogram can access
that part of RAM, so your variable is safe if yow mbt mess with it
carelessly.

To store a variable, you use a combination of allabhd .db.
Using .db, you specify the value you wish the \@gado hold at the
beginning of the program. This is usually zercwdver, let's use an
example of a number of lives being equal to 5.

Number_Of Lives:

.db 5

To understand how to access this, remember tbatahable is
stored in RAM. Therefore, you access the variaklag a RAM
address. Just like labels pertain to a partidRkalM address (and jp tells
the calculator to jump to that particular RAM adsh)k variable names
pertain to particular RAM addresses. | will tetluyabout accessing the
variable in a moment, but it is very important yemember that the
value 5 is stored in RAM and accessed by the addvisre it is
located. On the next page is a small programjtartcanslation:

Lesson Four: The Translation of the 1 + 5 Program; Labels, Variables, and How the Calculator Works
with Them

ASM RAM ADDRESS TRANSLATION, IN
ON CALCULATOR | DECIMAL NUMBERS

#include “ti83plus.inc”

.org 40339
.db t2ByteTok, tAsmCmp 40339 187 109
B_CALL _CIrLCDFull 40341 239 17728
ret 40343 201

Number_Of Lives:

.db 5 40344 5

So Number_Of Lives pertains to RAM address 403#4ide
40344 is the number of lives.

There are many, many different ways to accessvdlige. For
now, use the statement Id a, (variable name). afways use
parentheses when you want to access whateverde ioERAM at a
particular address. So by using the statement(Nuamber_Of Lives),
you are telling the calculator to access whateaga & in RAM address

40344. Ld a, (Number_Of Lives) is the same as ([d@344). So now
a contains the value 5.

On the next page is a program that demonstrates thi

Lesson Four: The Translation of the 1 + 5 Program; Labels, Variables, and How the Calculator Works
with Them
#include “ti83plus.inc”
.org 40339

.db t2ByteTok, tAsmCmp

B_CALL _CIrLCDFull
Id a, (Number_Two)

; Solve the problem 2 + 5
add a, 5
Id h,0
dl, a

B_CALL _DispHL
B _CALL getKey
B_CALL _CIrLCDFull

ret

Number_Two:

.db 2

That recalls a variable. To store a value toraabée (for right
now), register A must contain the value that youtta store in the
variable. Then use Id (Variable), A. On the neati@is an example. It
will store the answer to the addition problem 5,@& that you do not
lose the answer to the problem.

Lesson Four: The Translation of the 1 + 5 Program; Labels, Variables, and How the Calculator Works
with Them

#include “ti83plus.inc”

.org 40339

.db t2ByteTok, tAsmCmp
B_CALL _CIrLCDFull
Ida, 5

; Solve the problem 5 + 7
add a, 7
Id (Addition_Answer), a

:Now recall and display the answer.
Id a, (Addition_Answer)
Id h,0

d I, a

B_CALL _DispHL
B_CALL _getKey
B_CALL _CIrLCDFull

ret

Addition_Answer:

.db 0

You have enough now to start your project ASM Gasil so in the next
lesson we will begin to work on it.

