
TI-83+ Z80 ASM 
for the Absolute 

Beginner 
 

LESSON SIX: 
 

• ASM Gorillas, Part I: The Planning 
Stages 

• ASM Gorillas, Part II: Variables and 
Constants 

• Looking Ahead 



  Lesson Six: ASM Gorillas—The Planning Stages, Variables and Constants                          2 
   

 

ASM GORILLAS, PART I: THE 
PLANNING STAGES 

 If you want to write a great game—whether Ti-Basic or ASM, 
whether C++ or Visual Basic—you should plan the game first.  If you 
don’t plan what you want to do, if you blindly start drawing pictures and 
coding without having any idea of what you’re up against, you’ll either 
give up a project or you’ll spend longer on it than you intended. 

 For example, a good friend of mine started writing a program that 
would translate QBasic (Microsoft’s special version of Basic) into ASM.  
While he had a great knowledge of QBasic and ASM, he failed to plan 
ahead: whether he could handle the project, what kind of time he would 
need, how to proceed, etc.  After only two months of programming, he 
canceled the project permanently, much to the dismay of many Ti-83+ 
programmers. 

 Planning a game doesn’t necessarily mean deciding what you’re 
going to do every single day of your life, but it does mean having a 
general idea of how to proceed.  My current project, S.A.D., required 
about six months of planning before the actual programming began. 

 Are you going to need six months to plan ASM Gorillas?  Heaven 
forbid!  I’d say only a few pages of planning are needed.  However, it is 
needed.  Even if you’ve done a major Ti-Basic program before, ASM 
programs require even more planning. 

 Be aware that some of the stuff we plan will not be programmed 
immediately.  But you need to be ready with what you want to do for the 
time that you’re ready to do it.  Do you see what I mean? ☺  Oh, and be 
sure to play http://www.kongregate.com/games/Moly/gorillas-bas again if you 
need to remember the game “Gorillas.” 



  Lesson Six: ASM Gorillas—The Planning Stages, Variables and Constants                          3 
   

 

Overview—Player the Game: The game consists of two players.  Each 
player plays as a gorilla, armed with nothing but exploding bananas. The 
object of the game is to hit your opponent’s gorilla with bananas more 
than his gorilla hits yours.   

The game is played in several rounds.  Every round, each of the two 
gorillas is placed on a random building on each side.  Each player takes 
a turn to enter velocity—how hard his gorilla should throw an exploding 
banana—and the angle he wants his gorilla to throw the banana.  The 
gorilla then throws the banana.  If a banana goes to high or too far, or if 
a banana hits a building, the player is unsuccessful and has to wait while 
the other player has a turn.  If a banana hits an opposing gorilla, the 
player who threw the banana gains a point, and the next round 
commences. 

The game ends when all rounds have finished, and the player with the 
most points wins.  In case of a tie, a tiebreaker round will occur to 
determine the winner of the game. 

Main Menu:  The game will have no splash screen.  However, the main 
menu will have a background image.  There will be four options: New 
Game, Load Game, Settings, and Quit. 

Settings Sub-Menu: This menu will allow players to select wind speed 
ranges and set the gravity.  Wind speed ranges will allow anything from 
strong winds to no winds to random winds, which will affect how fast 
the thrown banana is traveling.  Gravity can be specified as a number. 

New Game Sub-Menu: The player can either select a one player vs. AI 
game, a one player vs. one player game, or go back to the main menu 

New Game Sub-Menu 2: Players can input their names, as well as the 
number of rounds. 



  Lesson Six: ASM Gorillas—The Planning Stages, Variables and Constants                          4 
   

 

Loading the Game: Every round, a “Please Wait…” screen will display 
in order to load the game.  The game loads by drawing 12 buildings of 
different heights, placing the gorillas on the buildings, drawing the sun, 
and determining the wind speed. 

Graphics: Most graphics are 8 x 8 images.  Gorillas are 8 x 8 in size, 
and buildings are composed of selections of a collection of 8 x 8 parts.  
The sun will be bigger than 8 x 8. 

Throwing a Banana:  When the player enters the velocity and angle 
that his gorilla should throw the banana, the position for the banana is 
calculated one pixel at a time, taking into account velocity, angle, wind 
speed and gravity.  If the player’s banana hits the sun, the sun will 
change its face reaction, but neither the sun nor the banana will be 
affected.  If the banana hits a building, the building will be partially 
destroyed by the banana’s explosion. 



  Lesson Six: ASM Gorillas—The Planning Stages, Variables and Constants                          5 
   

 

ASM GORILLAS, PART II: VARIABLES 
AND CONSTANTS 

 Now that we have the general idea of the game, we need to 
proceed in an orderly fashion.  Since you’ve only learned about 
variables and constants so far, we’ll look at what variables and constants 
are needed for the game. 

Now, note that planning is not 100% “I’ve got it all together.”  
There will be some variables and constants we might, or will, add later 
that we won’t be able to think of immediately.  For sure, this includes 
variables we will add for sound and for drawing buildings. 

 From the planning, we know there are a lot of menus in the game.  
Menu_X and Menu_Y will be variables use to hold the position of the 
cursor at these menus. 

 We need variables to hold the range of wind speeds and the 
selected gravity from the menu.  The variable for this “wind speed” will 
be a constant (called Wind_Speed_Multiplier) multiplied by a random 
number to determine the strength of the wind per round.  If the player 
wants no wind, the constant will be equal to zero, which means that 0 
multiplied by the random number is zero.  If the player wants strong 
wind, the constant will equal six, which, when multiplied by a random 
number, creates a greater wind speed.  Gravity ranges from 1 to 20, with 
9.8 by default.  Gravity can only be entered in precision of tenths, and is 
a variable simply called “Gravity.”  Our variable will hold this value 
multiplied by 10. 

 While we need variables for the number of human players and the 
names of players, we will add these later.  Be aware, however, that these 
need to be added. 



  Lesson Six: ASM Gorillas—The Planning Stages, Variables and Constants                          6 
   

 

 Since the positions of the gorillas and the bananas changes 
constantly, we need six variables for these positions: an X, Y for the 
banana, and an X, Y for each gorilla.  For these variables (to practice 
future lessons), we will simply refer to them as Banana and Gorilla_1, 
Gorilla_2.  Thus each variable will have TWO .dbs for two bytes of 
data, one byte for X and one byte for Y.  We will also need a variable to 
hold the random wind speed selected for the particular round.  Finally, 
we need variables to hold the velocity and angle of the tossed banana. 

 Each player needs a variable to hold their score.  Of course, this 
means a variable is needed for the number of rounds. 

 We need one variable to hold data for animating the bananas and 
the gorillas.  We’ll talk later about what this variable does and why we 
need only one variable. 

 With all this in mind, let’s put all these variables in your program.  
Type the code on the next page, and save your file as 
ASMGorillasMain.asm. 



  Lesson Six: ASM Gorillas—The Planning Stages, Variables and Constants                          7 
   

 

     

 

 

 

 

 

 

 

 

 

 

#include “ti83plus.inc” 

.org  40339 

.db    t2ByteTok, tAsmCmp 
 

Menu_X:  ; Holds the X and Y positions for the cursor in menus 

 .db 0 

Menu_Y: 

 .db 0 

Wind_Speed_Multiplier:  ; A constant used in generating wind speeds 

 .db 4   ; 4 is the default, medium winds 

Gravity: 

 .db 98  ; Gravity is 9.8 meters per second by default 

Banana:  ; The X Position and the Y Position of the Banana that is thrown 

 .db 0, 0 

; X and Y positions of each of the player’s gorillas 

Gorilla_1:   

 .db 0, 0 

Gorilla_2: 

 .db 0, 0 

Wind_Speed: 

 .db 0 

Velocity: 

 .db 0 

Angle: 

 .db 0 

Score:  ; Two bytes, one byte for each player’s score 

 .db 0, 0 

Number_Of_Round: 

 .db 3  ; The default number of rounds is 3 

Animation_Frames: 

.db 0 



  Lesson Six: ASM Gorillas—The Planning Stages, Variables and Constants                          8 
   

 

 Some of our values for the game ASM Gorillas will never change, 
so let’s program some of the constants we’ll need.  By using constants, 
we will never have to remember numbers: we will only need to 
remember words.  Which is easier to remember: 700 million miles an 
hour, or Speed_Of_Light? 

Take out your calculator, and set the following coordinates: Xmin=0, 
Xmax=94, Xscl=1, Ymin=-62, Ymax=0, and Yscl=1.  Move your cursor 
to X=11 and Y=-14, and type in “NEW GAME.”  This will allow you to 
visualize where the first part of the menu is going to be displayed.  Our 
Main Menu, and our Sub-Menus will have their text displayed at X=11 
and Y = 14 (With ASM, one doesn’t need negative numbers for 
displaying text).  So let’s create some constants to hold these values. 

Create a new text file called “ASMGorillasConstants.asm” and 
type in the following: 

MainMenuItem1X .equ 11 

MainMenuItem1Y .equ 14 

Also, go to the main file, ASMGorillasMain, and after #include 
“ti83plus.inc”, type #include “ASMGorillasConstants.asm” 

Let’s work on some more constants!  We want the calculator to 
know how many items each menu has.  The Main Menu has 4 items, and 
the Settings, Players and Names Sub-Menus have three items each. 

 We also want the calculator to know what menu it is working with.  
We identify each menu with a number.  Add the following to 
ASMGorillasConstants: 



  Lesson Six: ASM Gorillas—The Planning Stages, Variables and Constants                          9 
   

 

 
 

 

 

 

 

 

 

 Notice that you can assign a constant to a constant?  That’s 
because a constant is just a permanent number. 

 We’ll need four X,Y groups of constants for displaying text in-
game.  Two groups are used for the location of the Player’s 
Names/Angle/Velocity, and two are used for displaying score if the 
player wants to see the score. 

Player1NameX .equ 0 

Player1NameY .equ 0 

Player2NameX .equ 51 

Player2NameY .equ 0 

Player1ScoreX .equ 0 

Player1ScoreY .equ 58 

Player2ScoreX .equ 83 

Player2ScoreY .equ 58 

Main_Menu .equ 0 

Settings_Menu .equ1 

Players_Menu .equ 2 

Names_Menu .equ 3 

 

Main_Menu_Items .equ 4 

Settings_Menu_Items .equ 3 

Players_Menu_Items .equ Settings_Menu_Items 

Names_Menu_Items .equ Player_Menu_Items 



  Lesson Six: ASM Gorillas—The Planning Stages, Variables and Constants                          10 
   

 

Finally, we need an X and Y for displaying the text for “Loading,” 
which will be big text rather than small text.  Since we’re using big text 
to display the “Loading” text, we use X = 0 to 15 and Y = 0 to 7. 

LoadingTextX .equ 3 

LoadingTextY .equ 3 

 



  Lesson Six: ASM Gorillas—The Planning Stages, Variables and Constants                          11 
   

 

LOOKING AHEAD  

 Remember the three registers that we looked at in Lesson 4?  We 
talked about register A, which is one byte and is responsible for much of 
the CPU’s math.  We also talked about H and L.  H and L are also one 
byte, and therefore cannot be less than 0 or greater than 255. 

 However, the calculator has more registers than A, H and L.  We’ll 
look at some of these registers next week, as well as some more 
instructions for writing programs. 


