
TI-83+ Z80 ASM
for the Absolute

Beginner

LESSON SEVEN:

• General Purpose One-Byte Registers

• The B Register

• New Coding Instructions

 Lesson Six: General Purpose One-Byte Registers, The B Register, New Coding Instructions 2

GENERAL PURPOSE ONE-BYTE
REGISTERS

 Quick review, because the more you remember the purpose of
registers, the better. Registers are used as a CPU’s temporary memory.
The CPU cannot solve a problem in RAM; or when it can, RAM is very
slow. So the CPU uses registers as temporary memory to help in solving
a problem. However, registers are not good for long term memory, just
for holding values long enough for the CPU to finish its task.

If you remember Lesson Four, you remember that registers H and L can
be combined into HL. Next lesson, you will learn the importance of HL
and its special purpose. However, when H and L are used by
themselves, you can use them for almost anything that the calculator
needs them for in terms of “working memory.” For example, suppose
you want to add two numbers from RAM…one of the numbers is found
in RAM at address 36864, and the other is found in RAM at address
36965.

ld a, (36864)

; Notice that A is full. To get the second value from RAM address 36865,

; we need to make sure A is saved. Otherwise, if we let a be equal to

; whatever is in 36865, we lose the value we got from RAM address 36864.

; Since register h is empty, we put the value from register a into register h.

ld h, a ; Now we have saved the value from a to h.

ld a, (36865)

add a, h

 Lesson Six: General Purpose One-Byte Registers, The B Register, New Coding Instructions 3

In this example, we needed another register to hold a value so we
could add it later. This is just one of the many examples of using h and l
for register memory when “working memory” is needed.

 However, H and L are registers that, by themselves, have no
special purpose, something that they alone are good for. While register
A is used for math, H and L are, when used by themselves, general-
purpose registers. You use them when you need registers for the CPU to
solve a problem and some other registers are tied up with values that you
don’t want to lose. And you cannot use them for math like register A.

 By the way, although A is used for math, you can also use it for the
same purpose you use H and L for. That is, if A is empty and you need
to hold a temporary value when other registers are being used, you can
use A to hold the value that you need.

 What if registers H, A and L are all tied up? D and E are two more
registers available. Like H and L, D and E have a special purpose when
used together (in other words, DE), but they do not have a special
purpose when used by themselves.

And if H, A, L, D and E are tied up? Well, there’s always two
more registers, B and C. And like H, L, D and E, B and C have a special
purpose when used together. HOWEVER, registers B and C are like
register A: they have a special purpose, something they can do that no
other registers can do! We’ll learn the special purpose of C in another
lesson. The special purpose of B will be covered in a moment. Before
that, I want you to be aware that there are other one-byte registers, which
we will look at in future lessons.

Remember, these registers are one byte. If you try to go over 255,
the register will reset itself to zero. If you try to go below zero, the
register will reset itself to 255.

 Lesson Six: General Purpose One-Byte Registers, The B Register, New Coding Instructions 4

THE B REGISTER

 Although register B can be used to hold values when other
registers are tied up, register B is also commonly used as a counter in
terms of a Do-While or a For loop. It tells your ASM program how
many times you want to loop a section of code. It is much, much faster
than using the equivalent of a Ti-Basic While…End or a For…Loop,
but if you use it in its purest form, it has limitations.

 Lesson Six: General Purpose One-Byte Registers, The B Register, New Coding Instructions 5

If you have a loop you need to execute/run a certain number of
times, the B register allows you to do this kind of thing, and in an
efficient manner. You let B be equal to the number of times you want to
run a loop. Then for each time the loop runs, B is decreased by 1. If B
does not equal zero, the loop continues.

However, “be” (no pun intended) aware of the following:

1. Register B can only tell the calculator how many times left to
loop. Therefore, when Register B is used for this special
While…End purpose, you can only decrease B. You cannot
increase B.

2. Register B, when used for this special purpose, can only be
decreased by 1. Remember that B is “how many times to loop,”
so you can’t decrease it by a value other than one.

3. DJNZ cannot jump very far. It can only jump as far as JR can.

To use register B for performing loops, set B to the number of
times you want to loop. Use a label at the beginning of your loop, and
use the instruction DJNZ label at the end of your loop. When DJNZ is
reached, B is decreased by 1. If B is not zero, it will jump to your label,
aka the beginning of the loop. If B is zero, the program continues.

 Lesson Six: General Purpose One-Byte Registers, The B Register, New Coding Instructions 6

#include “ti83plus.inc”

.org 40339

.db t2ByteTok, tAsmCmp

B_CALL _ClrLCDFull

 ld b, 200 ; We want to loop 200 times
 ld a, 5

Beginning_Of_Loop:

 add a, 1

 djnz Beginning_Of_Loop

 ; Since a was increased by one 200 times, a should equal 205.

 ld h, 0
 ld l, a

 B_CALL _DispHL
 B_CALL _getKey
 B_CALL _ClrLCDFull

 ret

 Lesson Six: General Purpose One-Byte Registers, The B Register, New Coding Instructions 7

Exercises:

Here are three programs to loop several times. Each results in a
numerical answer that is displayed with _DispHL. Write programs to
carry out these computations. Answers will be displayed on the next
page, although portions such as “ret” and “.org 40339” will be left out of
the answers. Use any names you want for labels, and anything you want
for comments.

1. Start with register A equal to 250. Then subtract 2 from register A
100 times. Remember that sub number subtracts the number from
register A. For example, sub 1 means subtract 1 from register A.

2. Let register H be equal to 5, and start with register A equal to zero.
Add H to register A 10 times.

3. Let register H equal 2, register L equal 3, register D equal 4, and
register E equal 5. Start with A equal to 6. Add H, L, D and E to
A 5 times.

 Lesson Six: General Purpose One-Byte Registers, The B Register, New Coding Instructions 8

ANSWER TO ONE:

ANSWER TO TWO:

B_CALL _ClrLCDFull

 ld b, 100 ; We want to loop 100 times
 ld a, 250

Beginning_Of_Loop:

 sub 2

 djnz Beginning_Of_Loop

 ; Since a was decreased by two 100 times, a should equal 50.

 ld h, 0
 ld l, a

 B_CALL _DispHL

B_CALL _ClrLCDFull

 ld b, 10 ; We want to loop 10 times
 ld a, 0
 ld h, 5

Loop:

 add a, h

 djnz Loop

 ; Since a was increased by five 10 times, a should equal 50.

 ld h, 0
 ld l, a

 B_CALL _DispHL

 Lesson Six: General Purpose One-Byte Registers, The B Register, New Coding Instructions 9

ANSWER TO THREE:

 By the way, notice that in problems 2 and 3, H is wiped out and
replaced with another value, 0. Remember that registers are not meant
to hold permanent values, just temporary values.

B_CALL _ClrLCDFull

 ld b, 5 ; We want to loop 10 times
 ld a, 6
 ld h, 2
 ld l, 3
 ld d, 4
 ld e, 5

Loop:

 add a, h
 add a, l
 add a, d
 add a, e

 djnz Loop

 ; Since a was increased by fourteen 5 times, a should equal 76.

 ld h, 0
 ld l, a

 B_CALL _DispHL

 Lesson Six: General Purpose One-Byte Registers, The B Register, New Coding Instructions 10

NEW CODING INSTRUCTIONS
 Now that we have more registers to play with, here are some more
instructions, as well as a review of the previous instructions you learned.
Since you know the Ti-Basic language, I’m assuming you know what
parameters are.

If you see a parameter called One-Byte Register, you can use a
register A, B, C, D, E, H, or L in the parameter. Any other one-byte
registers you learn about CANNOT be used in this parameter.

If you see a parameter called Label, you can use a label. OR,
since you understand that Labels simply refer to RAM addresses, you
can use a number to refer to a RAM address.

If you see a parameter called Variable, you can use any variable in
your parameter. OR, since you understand that variables simply refer to
RAM addresses (just like labels), you can use a number to refer to a
RAM address.

 If you see a parameter called One-Byte Value, you use an 8-Bit
value in the parameter, any 1-Byte number. This, of course, means a
number from 0 to 255.

 Here are a couple of things you need to know: Each instruction
will come with a byte-storage, and a T-State value. Byte-storage is how
many bytes the instruction will take when translated into numbers, the
language of the calculator. The more byte-storage you have, the bigger
your ASM program will be. T-State is how fast the routine will run, on
any Ti-83+ or Ti-84+ calculator. The smaller the T-State value is, the
faster the routine is. A Ti-83+ (NOT the Silver Edition or the Ti-84+)
executes 6,000,000 T-States per second, and the Silver Edition/Ti-84+
can execute up to 15,000,000 T-States per second. Keeping this in

 Lesson Six: General Purpose One-Byte Registers, The B Register, New Coding Instructions 11

mind, part of your goal as an ASM programmer is to find the fewest
number of T-States that gets the job done. An instruction can have as
few as 4 T-States, or as many as 23 or more T-States. The fewer T-
States you have, the more your calculator can do per second. This
means that on a regular Ti-83+, if you want your game to run at 30
frames per second, you can have no more than 200,000 T-States for each
of your 30 loops. If you want your game to run at 60 frames per second,
you can have no more than 100,000 T-States for each of your 60 loops.
Keeping track of every single byte and T-State is a useless waste of
time, but keeping the general idea in your head can optimize your
program by as much as 75% or more—I’m dead serious.

One more thing, parentheses are required where indicated. Remember
that parentheses around a ram address means you want to access the data
inside that particular location in ram.

LD One-Byte Register, One-Byte Register

Stores any value from one register into another register. The first

register is what to store to, and the second register is the register to

store FROM.

Examples: LD A, H ; A now holds the value H is equal to

 LD B, C

T-States: 4 Byte Storage: 1 Byte

 Lesson Six: General Purpose One-Byte Registers, The B Register, New Coding Instructions 12

ADD A, One-Byte Value

Adds any value, up to 255, into register A

 Examples: ADD A, 122

T-States: 7 Byte Storage: 2 Bytes

LD One-Byte Register, One-Byte Value

Stores any value, up to 255, into a one-byte register.

 Examples: LD L, 55

 LD D, 127

T-States: 7 Byte Storage: 2 Bytes

ADD A, One-Byte Register

Adds the value inside a One-Byte Register into register A. You can

even add A to itself! (Effectively doubling the value)

 Examples: ADD A, H

 ADD A, A

T-States: 4 Byte Storage: 1

 Lesson Six: General Purpose One-Byte Registers, The B Register, New Coding Instructions 13

SUB One-Byte Register

Calculates register A minus the value inside a One-Byte Register,

and stores the answer in A. You can subtract A from itself,

although this will simply mean A is equal to 0.

 Examples: SUB H

 SUB C

T-States: 4 Byte Storage: 1

SUB One-Byte Value

Calculates A minus any one-byte value, and stores the answer in

A.

 Examples: SUB 97

 SUB 212

T-States: 7 Byte Storage: 2

 Lesson Six: General Purpose One-Byte Registers, The B Register, New Coding Instructions 14

DEC One-Byte Register

INC One-Byte Register

DEC subtracts 1 from a one-byte register. INC adds 1 to a one-

byte register.

 Examples: INC H

 DEC B

T-States: 4 Byte Storage: 1

JR Label

Jumps to a label. The label can only be a short distance away.

Spasm will tell you if the label is too far away to jr to.

 Examples: JR Add_One_To_A

T-States: 12 Byte Storage: 1

 Lesson Six: General Purpose One-Byte Registers, The B Register, New Coding Instructions 15

JP Label

Jumps to a label. When you use JP instead of JR, you can jump

much further in your program; in fact, you can jump anywhere in

your program.

 Examples: JP Subtract_One_From_B

T-States: 12 Byte Storage: 1

LD A, (Variable)

Retrieves the value stored inside Variable, and puts it in register

A. Recall that the variable pertains to a particular RAM address,

so you’re accessing the value stored in RAM.

 Examples: LD A, (Is_Game_Over)

T-States: 13 Byte Storage: 3

LD (Variable), A

Stores whatever is inside of A into a Variable.

 Examples: LD A, 5

 LD (Number_Of_Lives), A

T-States: 13 Byte Storage: 3

 Lesson Six: General Purpose One-Byte Registers, The B Register, New Coding Instructions 16

I’ll give you three programs to try out. Then try some of your own
using these instructions.

But before I do that, I want to get you excited about the next
lesson. Are you ready to learn about if…then…else? Of course you are.
But to understand this, you need to understand about a one-byte register
called F. So next lesson, I’ll talk about register F, and you’ll learn how
to use it to create if…then…else code. Oh, and you’ll also learn how to
display text!

DJNZ Label

Used for looping, where register B is equal to the number of times

you want to loop. When DJNZ is reached, B is decreased by 1.

Afterwards, if B does not equal zero, the program jumps to the

label you specified.

 Examples: DJNZ Beginning_Of_Loop

T-States: 8 if B is equal to 0 Byte Storage: 2

 13 if B is not equal to 0

 Lesson Six: General Purpose One-Byte Registers, The B Register, New Coding Instructions 17

PROGRAM 1: A basic multiplication program. Since multiplication in
its most basic form is repeated addition, this is a basic, but therefore un-
optimized, program that repeats addition. Be sure to remember that if
the product is greater than 255, you’ll get a very weird answer

#include “ti83plus.inc”

.org 40339

.db t2ByteTok, tAsmCmp

B_CALL _ClrLCDFull

; Use variables Factor1 and Factor2 to hold the numbers you want to
multiply.

 ld a, (Factor1)
 ld h, a
 ld a, (Factor2)
 ld b, a
 ld a, 0 ;We want register A to be empty.

Multiply:

 add a, h
 djnz Multiply

 ld h, 0
 ld l, a

 B_CALL _DispHL
 B_CALL _getKey
 B_CALL _ClrLCDFull

 ret

Factor1:
 .db 10

Factor2:
 .db 15

 Lesson Six: General Purpose One-Byte Registers, The B Register, New Coding Instructions 18

PROGRAM 2: An addition program, but this time, it will display the
two numbers you add as well as the final answer.

#include “ti83plus.inc”

.org 40339

.db t2ByteTok, tAsmCmp

B_CALL _ClrLCDFull

; Use variables Addend1/Addend2 to hold the numbers you want to add

 ld a, (Addend1)
 ld b, a ; Don’t use any other registers. Remember that
 ; the calculator uses registers to carry out a task.
 ; When you run B_CALL _DispHL, registers
 ; A, D, E, H and L are destroyed since they are
 ; used during _DispHL.
 ld a, (Addend2)
 ld c, a
 ld a, 0 ;We want register A to be empty.

Add: ; The label is not really necessary, it’s for reference

 add a, b
 add a, c

 ld h, 0
 ld l, b

ld b, a ; We will lose the value in A when _DispHL is
 ; used. Since we don’t need register B anymore,
 ; we use it to hold the sum from register A so that
 ; we don’t lose it.

 B_CALL _DispHL
 B_CALL _getKey

 ld h, 0
 ld l, c

;The program is continued on the next page

 Lesson Six: General Purpose One-Byte Registers, The B Register, New Coding Instructions 19

B_CALL _DispHL

 B_CALL _getKey

 ld h, 0
 ld l, b ; The sum of our two addends.

 B_CALL _DispHL
 B_CALL _getKey
 B_CALL _ClrLCDFull

 ret

Addend1:
 .db 20

Addend2:
 .db 35

 Lesson Six: General Purpose One-Byte Registers, The B Register, New Coding Instructions 20

PROGRAM THREE: Solves the program (15-1) + (14+3). This is not
the best way to solve this problem, but it does demonstrate how to use
INC and DEC.

#include “ti83plus.inc”

.org 40339

.db t2ByteTok, tAsmCmp

B_CALL _ClrLCDFull

 ld d, 15
 dec d
 ld e, 14
 inc e
 inc e
 inc e

 ld a, 0
 add a, d
 add a, e

 ld h, 0
 ld l, a

 B_CALL _DispHL
 B_CALL _getKey
 B_CALL _ClrLCDFull

 ret

