T1-83+ Z80 ASM
for the Absolute
Beginner

LESSON SEVEN:

* General Purpose One-Byte Registers
* The B Register

e New Coding Instructions

Lesson Six: General Purpose One-Byte Registers, The B Register, New Coding Instructions

GENERAL PURPOSE ONE-BYTE
REGISTERS

Quick review, because the more you remember theoge of
registers, the better. Registers are used as as@&tdporary memory.
The CPU cannot solve a problem in RAM; or wherait,c(RAM is very
slow. So the CPU uses registers as temporary nyetmdrelp in solving
a problem. However, registers are not good fog lmmm memory, just
for holding values long enough for the CPU to fimits task.

If you remember Lesson Four, you remember thaste H and L can
be combined into HL. Next lesson, you will leane importance of HL
and its special purpose. However, when H and luaegl by
themselves, you can use them for almost anythiagtkie calculator
needs them for in terms of “working memory.” Faample, suppose
you want to add two numbers from RAM...one of the bam is found
in RAM at address 36864, and the other is fourldAM at address
36965.

Id a, (36864)

; Notice that A is full. To get the second value from RAM address 36865,
; we need to make sure A is saved. Otherwise, if we let a be equal to

; whatever is in 36865, we lose the value we got from RAM address 36864.

; Since register h is empty, we put the value from register a into register h.

Id h, a ; Now we have saved the value from a to h.
Id a, (36865)
add a, h

Lesson Six: General Purpose One-Byte Registers, The B Register, New Coding Instructions

In this example, we needed another register to asldlue so we
could add it later. This is just one of the margraples of using h and |
for register memory when “working memory” is needed

However, H and L are registers that, by themsehlage no
special purpose, something that they alone are gmod/Nhile register
A is used for math, H and L are, when used by tledves, general-
purpose registers. You use them when you neesteggifor the CPU to
solve a problem and some other registers are peslithh values that you
don’t want to lose. And you cannot use them fotimiike register A.

By the way, although A is used for math, you ckso aise it for the
same purpose you use H and L for. That is, if Aty and you need
to hold a temporary value when other registerdaneg used, you can
use A to hold the value that you need.

What if registers H, A and L are all tied up? m¥& are two more
registers available. Like Hand L, D and E hawpecial purpose when
used together (in other words, DE), but they dohaote a special
purpose when used by themselves.

Andif H, A, L, D and E are tied up? Well, theralsvays two
more registers, B and C. And like H, L, D and Earigl C have a special
purpose when used together. HOWEVER, registensdBare like
register A: they have a special purpose, sometthieg can do that no
other registers can do! We’'ll learn the speciappsge of C in another
lesson. The special purpose of B will be covered moment. Before
that, | want you to be aware that there are otherlyyte registers, which
we will look at in future lessons.

Remember, these registers are one byte. If youotgy over 255,
the register will reset itself to zero. If you tiygo below zero, the
register will reset itself to 255.

n Lesson Six: General Purpose One-Byte Registers, The B Register, New Coding Instructions

THE B REGISTER

Although register B can be used to hold valuesndtber
registers are tied up, register B is also commasBid as a counter in
terms of a Do-While or a For loop. It tells youEK program how
many times you want to loop a section of codas huch, much faster
than using thequivalent of a Ti-Basic While...End or a For...Loop,
but if you use it in its purest form, it has lintitns.

Lesson Six: General Purpose One-Byte Registers, The B Register, New Coding Instructions

If you have a loop you need to execute/run a gertember of
times, the B register allows you to do this kindtohg, and in an
efficient manner. You let B be equal to the numifermes you want to
run a loop. Then for each time the loop runs, Basreased by 1. If B
does not equal zero, the loop continues.

However, “be” (no pun intended) aware of the follilogy

1. Register B can only tell the calculator how mamyes left to
loop. Therefore, when Register B is used for $ipiscial
While...End purpose, you can only decrease B. Yaunct
increase B.

2. Register B, when used for this special purpose podybe
decreased by 1. Remember that B is “how many timézop,”
S0 you can’t decrease it by a value other than one.

3. DINZ cannot jump very far. It can only jump asdarJR can.

To use register B for performing loops, set B t® tlumber of
times you want to loop. Use a label at the begigmf your loop, and
use the instruction DJNZ label at the end of yoapl When DINZ is
reached, B is decreased by 1. If B is not zenjlifump to your label,
aka the beginning of the loop. If B is zero, thhegsam continues.

— Lesson Six: General Purpose One-Byte Registers, The B Register, New Coding Instructions

#include “ti83plus.inc”
.org 40339
.db t2ByteTok, tAsmCmp

B_CALL _CIrLCDFull

Id b, 200 ; We want to loop 200 times
Id a, 5

Beginning_Of_Loop:
add a, 1

djnz Beginning_Of_Loop

; Since a was increased by one 200 times, a should equal 205.

Id h, O
Id1, a

B_CALL _DispHL
B_CALL _getKey
B_CALL _CIrLCDFull

ret

Lesson Six: General Purpose One-Byte Registers, The B Register, New Coding Instructions

Exercises:

Here are three programs to loop several timesh Eggults in a
numerical answer that is displayed with _DispHLrité/programs to
carry out these computations. Answers will be ldiggd on the next
page, although portions such as “ret” and “.org383will be left out of
the answers. Use any names you want for labelsaaything you want
for comments.

1. Start with register A equal to 250. Then subtBattom register A
100 times. Remember that sub number subtractsuimder from
register A. For example, sub 1 means subtraatrh fiegister A.

2. Let register H be equal to 5, and start with regigt equal to zero.
Add H to register A 10 times.

3. Let register H equal 2, register L equal 3, regiBtequal 4, and
register E equal 5. Start with A equal to 6. Atld_, D and E to
A 5 times.

n Lesson Six: General Purpose One-Byte Registers, The B Register, New Coding Instructions

ANSWER TO ONE:

B_CALL _CIrLCDFull

Id b, 100 ; We want to loop 100 times
Id a, 250

Beginning_Of Loop:

sub 2
djnz Beginning_Of_Loop
; Since a was decreased by two 100 times, a should equal 50.

Id h, O
Id |, a

B_CALL _DispHL

ANSWER TO TWO:

B_CALL _CIrLCDFull
Id b, 10 ; We want to loop 10 times

Ida, 0
Idh, 5

add a, h
djnz Loop
; Since a was increased by five 10 times, a should equal 50.

Id h, O
d I, a

B_CALL DispHL

n Lesson Six: General Purpose One-Byte Registers, The B Register, New Coding Instructions

ANSWER TO THREE:

B_CALL _CIrLCDFull

Id b, 5 ; We want to loop 10 times
Id a, 6
Id h, 2
dl, 3
Idd, 4
lde, 5

add a, h
add a, |
add a, d
add a, e
djnz Loop

; Since a was increased by fourteen 5 times, a should equal 76.

Idh, O
Idl, a

B_CALL _DispHL

By the way, notice that in problems 2 and 3, Miged out and
replaced with another value, 0. Remember thastexs are not meant
to hold permanent values, just temporary values.

Lesson Six: General Purpose One-Byte Registers, The B Register, New Coding Instructions

NEW CODING INSTRUCTIONS

Now that we have more registers to play with, legeesome more
Instructions, as well as a review of the previomsructions you learned.
Since you know the Ti-Basic language, I'm assunyiog know what
parameters are.

If you see a parameter call€he-Byte Register, you can use a
register A, B, C, D, E, H, or L in the parameté&my other one-byte
registers you learn about CANNOT be used in thiaupeter.

If you see a parameter calledbel, you can use a label. OR,
since you understand that Labels simply refer tdVRaldresses, you
can use a number to refer to a RAM address.

If you see a parameter callg@riable, you can use any variable in
your parameter. OR, since you understand thaabims simply refer to
RAM addresses (just like labels), you can use abmurto refer to a
RAM address.

If you see a parameter call€he-Byte Value, you use an 8-Bit
value in the parameter, any 1-Byte number. THisparse, means a
number from 0 to 255.

Here are a couple of things you need to know:hkastruction
will come with a byte-storage, and a T-State valBgte-storage is how
many bytes the instruction will take when translateéo numbers, the
language of the calculator. The more byte-stoyagehave, the bigger
your ASM program will be. T-State is how fast tiatine will run, on
any Ti-83+ or Ti-84+ calculator. The smaller th&tate value is, the
faster the routine is. A Ti-83+ (NOT the Silveritimh or the Ti-84+)
executes 6,000,000 T-States per second, and trexr &idlition/Ti-84+
can execute up to 15,000,000 T-States per sedéedping this in

Lesson Six: General Purpose One-Byte Registers, The B Register, New Coding Instructions

mind, part of your goal as an ASM programmer ifrid the fewest
number of T-States that gets the job done. Amugsbn can have as
few as 4 T-States, or as many as 23 or more T<Stdtke fewer T-
States you have, the more your calculator can dsgmond. This
means that on a regular Ti-83+, if you want youngdo run at 30
frames per second, you can have no more than 200 &ates for each
of your 30 loops. If you want your game to rurb@tframes per second,
you can have no more than 100,000 T-States for egbur 60 loops.
Keeping track of every single byte and T-State us@ess waste of
time, but keeping the general idea in your headogdimize your
program by as much as 75% or more—I’'m dead serious.

One more thing, parentheses are required whereatedl. Remember
that parentheses around a ram address means ybotovesncess the data
inside that particular location in ram.

LD One-Byte Register, One-Byte Register

Stores any value from one register into another register. The first
register is what to store to, and the second register is the register to
store FROM.

Examples: LD A, H ; Anow holds the value H is equal to

LD B, C

T-States: 4 Byte Storage: 1 Byte

Lesson Six: General Purpose One-Byte Registers, The B Register, New Coding Instructions

LD One-Byte Register, One-Byte Value
Stores any value, up to 255, into a one-byte register.
Examples: LD L, 55

LD D, 127

T-States: 7 Byte Storage: 2 Bytes

ADD A, One-Byte Value

Adds any value, up to 255, into register A

Examples: ADD A, 122

T-States: 7 Byte Storage: 2 Bytes

ADD A, One-Byte Register

Adds the value inside a One-Byte Register into register A. You can
even add A to itself! (Effectively doubling the value)

Examples: ADD A, H

ADD A, A

Byte Storage: 1

Lesson Six: General Purpose One-Byte Registers, The B Register, New Coding Instructions

SUB One-Byte Value

Calculates A minus any one-byte value, and stores the answer in
A.

Examples: SUB 97
SUB 212

T-States: 7 Byte Storage: 2

SUB One-Byte Register

Calculates register A minus the value inside a One-Byte Register,
and stores the answer in A. You can subtract A from itself,

although this will simply mean A is equal to 0.

Examples: SUB H
SUB C

T-States: 4 Byte Storage: 1

Lesson Six: General Purpose One-Byte Registers, The B Register, New Coding Instructions

DEC One-Byte Register
INC One-Byte Register

DEC subtracts 1 from a one-byte register. INC adds 1 to a one-
byte register.

Examples: INC H

DEC B

Byte Storage: 1

JR Label

Jumps to a label. The label can only be a short distance away.

Spasm will tell you if the label is too far away to jr to.

Examples: JR Add One To_ A

Byte Storage: 1

Lesson Six: General Purpose One-Byte Registers, The B Register, New Coding Instructions

JP Label

Jumps to a label. When you use JP instead of JR, you can jump

much further in your program; in fact, you can jump anywhere in

your program.

Examples: JP Subtract_ One_From B

T-States: 12 Byte Storage: 1

LD A, (Variable)

Retrieves the value stored inside Variable, and puts it in register
A. Recall that the variable pertains to a particular RAM address,
so you're accessing the value stored in RAM.

Examples: LD A, (Is_Game_Over)

T-States: 13 Byte Storage: 3

LD (Variable), A
Stores whatever is inside of A into a Variable.
Examples: LD A, 5

LD (Number_Of_Lives), A

Byte Storage: 3

Lesson Six: General Purpose One-Byte Registers, The B Register, New Coding Instructions

DINZ Label

Used for looping, where register B is equal to the number of times
you want to loop. When DJNZ is reached, B is decreased by 1.
Afterwards, if B does not equal zero, the program jumps to the
label you specified.

Examples: DJNZ Beginning_Of Loop

T-States: 8 if Bis equal to 0 Byte Storage: 2

13 if B is not equal to O

I'll give you three programs to try out. Then sgme of your own
using these instructions.

But before | do that, | want to get you excited athihe next
lesson. Are you ready to learn about if...then...el€dZourse you are.
But to understand this, you need to understandtabone-byte register
called F. So next lesson, I'll talk about regidteand you’ll learn how
to use it to create if...then...else code. Oh, andliyalgo learn how to

display text!

OK,AGREER WE
TEXTINGAT

THE SAME TIME,

Lesson Six: General Purpose One-Byte Registers, The B Register, New Coding Instructions

PROGRAM 1: A basic multiplication program. Sinoeltiplication in
its most basic form is repeated addition, thislssic, but therefore un-
optimized, program that repeats addition. Be smremember that if
the product is greater than 255, you'll get a weeyrd answer

#include “ti83plus.inc”
.org 40339
.db t2ByteTok, tAsmCmp

B_CALL _CIrLCDFull

; Use variables Factorl and Factor2 to hold the numbers you want to
multiply.

Id a, (Factorl)

Id h, a

Id a, (Factor2)

Id b, a

Ida, 0 ‘We want register A to be empty.

Multiply:

add a, h
djnz Multiply

Id h, O
Id I, a

B_CALL _DispHL
B_CALL _getKey
B_CALL _CIrLCDFull

ret

Factorl:
.db 10

Factor2:
.db 15

Lesson Six: General Purpose One-Byte Registers, The B Register, New Coding Instructions

PROGRAM 2: An addition program, but this timewitl display the
two numbers you add as well as the final answer.

#include “ti83plus.inc”
.org 40339
.db t2ByteTok, tAsmCmp

B_CALL _CIrLCDFull

; Use variables Addendl/Addend?2 to hold the numbers you want to add

Id a, (Addendl)

Id b, a ; Don’t use any other registers. Remember that
; the calculator uses registers to carry out a task.
; When you run B_CALL _DispHL, registers
; A, D, E, Hand L are destroyed since they are
; used during _DispHL.

Id a, (Addend2)

Id c, a

Id a, 0 ;We want register A to be empty.

; The label is not really necessary, it's for reference

; We will lose the value in A when _DispHL is

; used. Since we don’t need register B anymore,
; we use it to hold the sum from register A so that
; we don't lose it.

B_CALL _DispHL
B_CALL _getKey

Id h, O
IdI, c

;The program is continued on the next page

Lesson Six: General Purpose One-Byte Registers, The B Register, New Coding Instructions

B_CALL _DispHL
B_CALL _getKey

Id h, O
IdI, b : The sum of our two addends.

B_CALL _DispHL
B_CALL _getKey
B_CALL _CIrLCDFull

Lesson Six: General Purpose One-Byte Registers, The B Register, New Coding Instructions

PROGRAM THREE: Solves the program (15-1) + (14+8Bhis is not
the best way to solve this problem, but it doesalgstrate how to use
INC and DEC.

#include “ti83plus.inc”

.org 40339
.db t2ByteTok, tAsmCmp

B_CALL _CIrLCDFull

Idd, 15
decd
Ide, 14
inc e
inc e
ince

Ida, 0
add a, d
add a, e

Id h, O
Id I, a

B_CALL DispHL
B _CALL getKey
B_CALL _CIrLCDFull

ret

