
TI-83+ Z80 ASM
for the Absolute

Beginner

LESSON EIGHT:

• The F Register

• If-Then Statements in ASM

 Lesson Eight: The F Register; If-Then Statements in ASM 2

THE F REGISTER
Unlike the registers you worked with so far, F is a one-byte

register that you CANNOT modify. This register is used by the
calculator’s processor to see if certain events have occurred. It consists
of a whole bunch of “flags,” and you can think of these flags as mailbox
flags.

Think about it. If you need to send a letter to someone, you need
to let the mailman know that you have mail in your box that needs to be
sent. To do this, to let the mailman know, you put the flag up on your
mailbox. When you have no mail, the flag is down.

Sadly, when we refer to register F, we don’t say that flags are “up”
or “down.” We say they are “set” or “reset.” If an event has occurred, a
flag is set. It’s like if your mailbox has mail, the mailbox flag is “set” to
the “up” position. If an event hasn’t occurred, the flag is reset, almost
like if your mailbox doesn’t have mail, you “reset” the flag to its down
position, its original position.

 Lesson Eight: The F Register; If-Then Statements in ASM 3

There are several events that F will tell you have occurred or not.
However, we are only concerned with two for these lessons. You can
look in appendix D if you’re curious about the other flags, which aren’t
used as often.

THE ZERO FLAG is set if any calculation causes a register to
equal zero. If the zero flag is set, this is represented as the letter Z. If a
calculation DOES NOT result in a register being equal to zero, the zero
flag is reset, represented as NZ (meaning not-zero.)

Here are some examples of calculations / routines that will set the
zero flag:

For a reason I don’t know about, ld register, 0 will not set the zero
flag.

THE CARRY FLAG is set if you go over a register’s maximum or
under a register’s minimum. In the case of one-byte registers, the carry
flag is set if you go over 255 or under zero with a calculation. The carry
flag is reset if this doesn’t happen, that is, if you stay inside the range of
the register. C means the carry flag is set, and NC means the carry flag
is reset.

ld a, 1

dec a

ld a, 250

ld e, 6

add a, e ; Remember that a cannot be bigger than 255, so it resets to zero

 Lesson Eight: The F Register; If-Then Statements in ASM 4

Here’s some examples of some routines that will set the carry flag.

So how do we use the zero flag and the carry flag? We use them in
If…Then statements. However, there’s a different approach for If…
Then in ASM programming.

ld e, 0

dec e

ld a, 250

ld e, 6

add a, e

ld a, 255

inc a

 Lesson Eight: The F Register; If-Then Statements in ASM 5

IF-THEN STATEMENTS IN ASM
If you’ve programmed in C++, Basic, Ti-Basic (assumed) or Java,

you’ll find the if-then-else statements to be very similar to each other.
You’re going to find that you need a little bit more work to do this in
ASM.

Let’s start by introducing a new instruction: CP

Although CP does not affect A, it DOES affect flags. Let’s
suppose that A is equal to 90. Let’s say you use the instruction CP 90.
Then A – 90 = 90 – 90 = 0. So the zero flag is set. The carry flag is
reset, since A – 90 does not go below zero or above 255.

Let’s suppose that A is still equal to 90, and you use the instruction
CP 89. Then A – 89 = 90 – 89 = 1, which is not equal to zero. So the
zero flag is reset, not set. ALSO, the carry flag is not set, since 90 – 89
does not go below zero or above 255.

CP One-Byte Value

CP means compare, meaning you compare a value with whatever is

inside of A. CP subtracts the one-byte value from A. A is unaffected.

For example, if A is equal to 86, CP 56 will mean 86 – 56 = 30.

However, A will still equal 86.

Examples: CP 10

T-States: 7 Byte Storage: 2 Bytes

 Lesson Eight: The F Register; If-Then Statements in ASM 6

What if you use CP 91? Then A – 91 = -1, but A cannot be below
zero! So A becomes 255, and the carry flag is set, since 90 – 91 went
below zero.

Did you notice something? In the first example, CP 90, 90 was
equal to A. In the second example, 89 was less than A. In the third
example, 91 was greater than A. What does this sound like? “If A = 90,
if A < 91, if A > 89, etc.”

Exercise: For each value of register A, and for each CP, figure other
whether the zero and carry flags will be set or reset.

1. A = 40, CP 12

2. A = 36, CP 36

3. A = 49, CP 48

4. A = 60, CP 60

5. A = 55, CP 56

6. A = 80, CP 96

 Lesson Eight: The F Register; If-Then Statements in ASM 7

Answers:

1. Both the zero and carry flags are reset.

2. The zero flag is set, the carry flag is reset

3. Both the zero and carry flags are reset

4. The zero flag is set, the carry flag is reset

5. The zero flag is reset, the carry flag is set

6. The zero flag is reset, the carry flag is set

Now that you understand how CP is similar to If statements and
sets flags, suppose that you had limitations in a Ti-Basic program. Let's
pretend that you could do only three things depending on if a condition
was true or false: Goto a label, run a subprogram, or stop your
program/subprogram.

For example (and the conditions are just example conditions):

If A = 90

Goto AE (Any Label)

If A < 91

Stop

If A > 89

pgrmSUBPGRM (Any program)

 Lesson Eight: The F Register; If-Then Statements in ASM 8

What if that was all you could do? You can still use Lbl AE or
pgrmSUBPGRM to run commands, but the fact remains that you could
not just say “If this is true, do this” directly. You'd have to use your
label/subprograms to tell the calculator what to do if a condition is true.

That's the way it is with ASM. You can only jump to a label, call a
subroutine (explained in a moment), or exit a subroutine/end the
program when using an if-then in ASM.

Now before we go return to if-then statements, what's this about
subroutines? It's the same concept as running subprograms. You know
how in Ti-Basic, by using the pgrm command, you can run a program
from inside your program? For example, let's say you have a routine for
drawing text that you have to use, say, 50 times. Do you paste the code
50 times in your Ti-Basic program? Well I certainly hope not! That
would use a lot of wasted space, wouldn't it? No, you put the sprite
routine in another program, and you run your subprogram every time
you need it. Another term for this is “calling” your subprogram.

Just like you jump to a label in ASM, you “call” a label to run a
subroutine in ASM.

CALL Label

CALL will run a subroutine in your ASM program, like running a Ti-

Basic subprogram. Use RET to exit the subroutine and return to the

line after your “CALL” line.

Examples: CALL Increase_Number_Of_Lives

T-States: 17 Byte Storage: 3 Bytes

 Lesson Eight: The F Register; If-Then Statements in ASM 9

Okay, back to If-Then. Remember that CP will set or reset flags.
Then you check the flag of interest, telling the calculator to jump, call,
or ret only if that flag is true/false to your liking. The next four
paragraphs will be summarized in a table, but be sure to read them
carefully nonetheless.

If you want to see if A is equal to a value, use CP value and check
the zero flag. This is because A – value = 0 if A equals the value that
you check. This means you check to see if the zero flag is set for A
equal to a value. If you want to check and see if A is NOT equal to a
value, check and see if the zero flag is reset.

If you want to see if A is less than a value, use CP value and check
the carry flag. If the carry flag is set, that means A – value is less than
zero, since the value is greater than whatever is in A. (For example,
look at our previous example on page 6, where A = 90 and you use CP
91) Remember that the carry flag is only set if you go outside a
register's maximum or minimum range. Since A – value goes below
zero, the C flag is set.

If you want to see if A is greater than a value, you have to be
careful. You might say at first, “Well, all I have to do is check to see if
the carry flag is reset.” After all, for example, if A = 90 and you use CP
89, 90 – 89 does not go below zero, so the carry flag is reset. This
means A=90 is greater than 89. HOWEVER, what if you use CP 90?
Then A – 90 = 0, which still resets the carry flag. This means,
technically, if the carry flag is reset after you use CP, A is greater than
OR EQUAL to a value. If you want to see if A is strictly greater than a
value, you need to increase the value you check in CP by 1, then check
to see if the carry flag is reset. For example, if you want to see if A (in
this case, 90) is greater than 89, you have to use CP 90.

 Lesson Eight: The F Register; If-Then Statements in ASM 10

Also, if you want to check and see if A is less than OR EQUAL to
a value, you need to decrease the value you check in CP by 1, then check
to see if the carry flag is set.

TI-BASIC STATEMENT ASM EQUIVALENT FLAG CONDITION TO CHECK

If A = 90 CP 90 Z (Zero)

If A != (Does not equal) 90 CP 90 NZ (Not Zero)

If A > 90 CP 91 NC (Not Carry)

If A >= 90 CP 90 NC (Not Carry)

If A < 90 CP 90 C (Carry)

If A <= 90 CP 89 C (Carry)

Exercise: For each condition, state the CP value function you should use
and the flag condition you should check.

1. If A = 20

2. If A <= 80

3. If A != 69

4. If A > 60

5. If A = 127

6. If A >=77

7. If A < 21

 Lesson Eight: The F Register; If-Then Statements in ASM 11

ANSWERS:

1. CP 20, Z (zero flag set)

2. CP 79, C

3. CP 69, NZ

4. CP 61, NC

5. CP 127, Z

6. CP 77, NC

7. CP 21, C

JR Condition, Label

JP Condition, Label

Jumps to a label ONLY if the condition you specify—Z, NZ, C or NC—is

true.

Examples: JR Z, Label ; Jumps only if the zero flag is set

JP NC, Label ; Jumps only if the carry flag is reset

T-States: Byte Storage:

JR—12 if condition is true 2 Bytes

7 if condition is true 2 Bytes

JP – 10 no matter what

 Lesson Eight: The F Register; If-Then Statements in ASM 12

As you may have guessed, these are the only four instructions you
can use after a CP “If” statement. If you're having trouble understanding
the above 9 pages, check out these example programs before deciding if
you need to read the chapter again.

RET Condition

Ends your program (or the subroutine you called) ONLY if the

condition you specify is true

Examples: RET C ; Ends only if the carry flag is set

T-States: 11 if condition is true Byte Storage: 1 Byte

5 if condition is false

CALL Condition, Label

Calls a subroutine ONLY if the condition you specify is true.

Examples: CALL NZ, Label ; Calls if the zero flag is reset

T-States: 17 if condition is true Byte Storage: 3 Bytes

10 if condition is false

 Lesson Eight: The F Register; If-Then Statements in ASM 13

A program that uses JR and RET in If...Then Statements

#include “ti83plus.inc”

.org 40339

.db t2ByteTok, tAsmCmp

B_CALL _ClrLCDFull

ld a, 1

cp 1 ; If A = 1

jr z, DisplayNumber1 ; A – 1 = 0. So, if A = 1, CP 1 will

; give A – 1 = 1 – 1 = 0, therefore the

; zero (Z) flag will be set

cp 2

ret z ; If A = 2, end the program

DisplayNumber1:

ld h, 0

ld l, a ; Remember that CP does not affect A. A still equals 1.

B_CALL _DispHL

B_CALL _getKey

B_CALL _ClrCLDFull

ret

 Lesson Eight: The F Register; If-Then Statements in ASM 14

A program that uses the CALL routine. From this point, program text
will be smaller. You should zoom in if you find it hard to read.

#include “ti83plus.inc”

.org 40339

.db t2ByteTok, tAsmCmp

B_CALL _ClrLCDFull

ld a, 27

cp 27 ; If A = 1

call c, Display_Register_A ; If A < 27. Subtracting 27 from A = 26 or less will

; cause A to go below zero, thus setting the carry

;flag

; If Display_Register_A is run, the program will run here when it is finished

B_CALL _ClrLCDFull

ret ; End the program whether A < 27 or not

Display_Register_A:

ld h, 0

ld l, a

B_CALL _DispHL

B_CALL _getKey

ret ; Don't forget to use ret to end the subroutine

 Lesson Eight: The F Register; If-Then Statements in ASM 15

#include “ti83plus.inc”

.org 40339

.db t2ByteTok, tAsmCmp

B_CALL _ClrLCDFull

ld a, 0

Increase_A_Until_A_Is_Strictly_Greater_Than_30:

inc a

cp 31

jr c, Increase_A_Until_A_Is_Strictly_Greater_Than_30 ; We only want to go to Next_Step

; if A is greater than 30.

; Note that since C is the opposite of

; NC, this is the same as saying

; jr nc, Next_Step. In other words,

; if A is not greater than 30, A

; will be less than or equal to 30.

Next_Step:

call Display_Register_A

ret

Display_Register_A:

ld h, 0

ld l, a

B_CALL _DispHL

B_CALL _getKey

ret ; Don't forget to use ret to end the subroutine

 Lesson Eight: The F Register; If-Then Statements in ASM 16

Be aware that you can only use CP for register A. However, you
can use a register to compare with A.

Just remember from the table, if you need to check to see if A is
less than OR EQUAL to the value in the register, you need to decrease
the value in the register of your choice by 1. Also, if you need to check
to see if A is strictly greater than the value in your register, you need to
increase the value in your register by 1.

Next week, you'll learn how to display text! Great job making it
this far!

CP One-Byte Register

Subtracts the value in the one-byte register from A. A is unaffected.

For example, if A is equal to 86, and E = 56, CP E will mean 86 – 56 =

30. However, A will still equal 86.

Examples: CP H

T-States: 4 Byte Storage: 1 Byte

