
TI-83+ Z80 ASM
for the Absolute

Beginner

LESSON FOURTEEN:

• Inputting Binary Numbers

• Displaying Full-Sized Pictures

• If You Just Have to Have More RAM

 Lesson Fourteen: Inputting Binary Numbers, Displaying Full-Sized Pictures, If You Just Have to Have More RAM 2

INPUTTING BINARY NUMBERS

So far in these lessons, you could write a program and easily get
away with decimal numbers. Sure, hexadecimal numbers were
introduced, but whenever you use hexadecimal numbers, it’s for stupid
tradition. (There is one exception, covered later)

But NOW, we’re getting to the point where there will be some
numbers better viewed and entered as binary numbers. Not because of
tradition, but because of convenience. The next lesson is one such
example.

To enter a binary number in ASM, just place a percent sign in front
of your number, entered as 1s and 0s. This doesn’t work on all
assemblers, but it for sure works on SPASM.

Example: ld a, %00001000

is the same as saying ld a, 8

 Lesson Fourteen: Inputting Binary Numbers, Displaying Full-Sized Pictures, If You Just Have to Have More RAM 3

DISPLAYING FULL-SIZED PICTURES
 From your Ti-Basic programming, you’re probably aware of the
size of the screen in terms of pixels. The full screen is 96 pixels wide by
64 pixels high, although you can only use 95 pixels horizontally and 63
pixels vertically for a Ti-Basic game. The full screen, 96 x 64, is
available for use in an ASM program.

As you remember from lesson 3, the Ti-83+ has some special areas
of RAM reserved to use for variables, functions, etc. There are two
areas of RAM that the calculator uses for displaying pictures.

The first area is mostly for advanced users, and will not be
discussed much in these lessons. You can read “Learn Ti-83+ ASM in
28 Days” to learn how to use this portion of RAM to the fullest extent.
However, we do want to know about this area. To make a long story
short, whatever you see on the screen of your calculator at any time is
held in this RAM. By playing around with this area of RAM, you can
change how your screen looks instantly.

The second area of RAM for pictures is what we’re most interested
in. Called a buffer, it is used for storing a picture that you don’t want to
display immediately.

For instance, if you want to make the screen black by drawing 100
lines, you can draw them to the buffer, and the user won’t see them
being drawn one at a time. In Ti-Basic, there was no way you could do
this with the “Horizontal” command…if you ran the “Horizontal”
instruction 63 times to blacken the screen, the user would see the screen
get black from top to bottom, rather than all at once. With ASM, you
can draw these lines to the buffer, and then display the picture after all

 Lesson Fourteen: Inputting Binary Numbers, Displaying Full-Sized Pictures, If You Just Have to Have More RAM 4

the lines are drawn. Then all the user will see is an instant black screen,
not several lines being drawn.

Without a buffer, you could not create a first person shooter that
would scroll smoothly. The player would see walls being drawn one at a
time, rather than all at once. By using the buffer, you can draw walls
without the person seeing until you’re finished; then by displaying the
buffer, everything shows up at once.

So, what is this…buffer? It’s an area of RAM called plotsscreen.
Plotsscreen is a constant for the location/address of this RAM. So you
can use HL on plotsscreen, as you probably guessed.

Anyways, plotsscreen holds 768 bytes of picture information.
Here’s the math: It takes 1 byte to hold eight pixels on the screen (read
the next paragraph to find out why). So that means one row of 96 pixels
uses 12 bytes. Multiply that by 64 rows, and you have 768 bytes.

But how does this 1 byte tell the calculator what the eight pixels
should look like? Remember lesson one? Every BIT (not byte) tells the
calculator whether a pixel is on or off. If a bit is equal to 1, the pixel for
that bit is black, it’s on. If a bit is equal to 0, the pixel is white, or off.
Since a pixel is either on or off, only one bit is needed for each pixel.
There’s eight bits in a byte, so a byte can hold eight pixels. So if you
have a value of %10001000 (a binary number), you’ll get this kind of
picture on your screen:

Plotsscreen will always start at the upper-right hand corner of your
screen. So if you store information in the first byte of plotsscreen, you
will affect only the first eight pixels of the first row. If you store

 Lesson Fourteen: Inputting Binary Numbers, Displaying Full-Sized Pictures, If You Just Have to Have More RAM 5

information in the twelth byte of plotsscreen (aka plotsscreen + 11), you
will affect only the far right edge of the first row. Thus, plotsscreen +
767 will affect the very last eight pixels of the screen on your calculator.

Thus, if you want to display the following picture on your screen:

The next page shows what the data for the picture looks like.
Notice that just like with any other raw data you enter, you need a label.

 Lesson Fourteen: Inputting Binary Numbers, Displaying Full-Sized Pictures, If You Just Have to Have More RAM 6

Full_Sized_Picture_Example:

.db %11111111,%11111111,%11111111,%11111111,%11111111,%11111111,%01111111,%11111111,%11111111,%11111111,%11111111,%11111111
.db %11111111,%11111111,%11111111,%11111111,%11111000,%00000000,%00000000,%00001111,%11111111,%11111111,%11111111,%11111111
.db %11111111,%11111111,%11111111,%11111111,%00000000,%00000000,%00000000,%00000000,%01111111,%11111111,%11111111,%11111111
.db %11111111,%11111111,%11111111,%11110000,%00000000,%00000000,%00000000,%00000000,%00000111,%11111111,%11111111,%11111111
.db %11111111,%11111111,%11111111,%10000000,%00000000,%00000000,%00000000,%00000000,%00000000,%11111111,%11111111,%11111111
.db %11111111,%11111111,%11111110,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00111111,%11111111,%11111111
.db %11111111,%11111111,%11110000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000111,%11111111,%11111111
.db %11111111,%11111111,%11100000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000011,%11111111,%11111111
.db %11111111,%11111111,%10000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%11111111,%11111111
.db %11111111,%11111110,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00111111,%11111111
.db %11111111,%11111100,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00011111,%11111111
.db %11111111,%11110000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000111,%11111111
.db %11111111,%11100000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000011,%11111111
.db %11111111,%11000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000001,%11111111
.db %11111111,%10000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%11111111
.db %11111111,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%01111111
.db %11111110,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00111111
.db %11111100,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00011111
.db %11111000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00001111
.db %11111000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00001111
.db %11110000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000111
.db %11110000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000111
.db %11100000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000011
.db %11100000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000011
.db %11000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000001
.db %11000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000001
.db %10000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000
.db %10000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000
.db %10000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000
.db %10000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000
.db %10000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000
.db %10000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000
.db %00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000
.db %10000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000
.db %10000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000
.db %10000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000
.db %10000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000
.db %10000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000
.db %10000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000
.db %11000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000001
.db %11000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000001
.db %11100000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000011
.db %11100000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000011
.db %11110000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000111
.db %11110000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000111
.db %11111000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00001111
.db %11111000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00001111
.db %11111100,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00011111
.db %11111110,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00111111
.db %11111111,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%01111111
.db %11111111,%10000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%11111111
.db %11111111,%11000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000001,%11111111
.db %11111111,%11100000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000011,%11111111
.db %11111111,%11110000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000111,%11111111
.db %11111111,%11111100,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00011111,%11111111
.db %11111111,%11111110,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00111111,%11111111
.db %11111111,%11111111,%10000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%11111111,%11111111
.db %11111111,%11111111,%11100000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000011,%11111111,%11111111
.db %11111111,%11111111,%11110000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00000111,%11111111,%11111111
.db %11111111,%11111111,%11111110,%00000000,%00000000,%00000000,%00000000,%00000000,%00000000,%00111111,%11111111,%11111111
.db %11111111,%11111111,%11111111,%10000000,%00000000,%00000000,%00000000,%00000000,%00000000,%11111111,%11111111,%11111111
.db %11111111,%11111111,%11111111,%11110000,%00000000,%00000000,%00000000,%00000000,%00000111,%11111111,%11111111,%11111111
.db %11111111,%11111111,%11111111,%11111111,%00000000,%00000000,%00000000,%00000000,%01111111,%11111111,%11111111,%11111111
.db %11111111,%11111111,%11111111,%11111111,%11111000,%00000000,%00000000,%00001111,%11111111,%11111111,%11111111,%11111111

 Lesson Fourteen: Inputting Binary Numbers, Displaying Full-Sized Pictures, If You Just Have to Have More RAM 7

 So this is the picture stored in your program. By now, you know
enough to figure out how to copy this data to the buffer plotsscreen.
However, the code you would have to write would be long and tedious.
It’s time to introduce a new instruction! We want to copy this picture
data from Full_Sized_Picture_Example to plotsscreen, and there is an
instruction that allows us to do just that, in a few steps.

LDIR

Copies data from one location to another. Use register BC to specify

how many bytes you want to copy. Use HL to tell the calculator

where you want to copy data from, and use DE to tell the calculator

where you want the data copied to.

Examples: LD HL, Full_Sized_Picture_Example

 LD DE, plotsscreen

 LD BC, 768

 LDIR

T-States: Depends on Byte Storage: 2 Bytes

 how much is being copied.

 The formula is

 T-States = BC * 21 – 5

 Lesson Fourteen: Inputting Binary Numbers, Displaying Full-Sized Pictures, If You Just Have to Have More RAM 8

Hopefully you remember that the buffer is only used to store a
picture you don’t want to display immediately. Even after everything
has been copied to plotsscreen, we won’t see the picture. We need to
move the picture to the area of RAM that displays the picture
immediately. B_CALL _GrBufCpy will do just that. It copies the
buffer to the display RAM.

The next page contains a practice program. I recommend you
create your own picture. You can use the following program to convert
a monochrome bitmap into the binary data you need:

http://www.ticalc.org/archives/files/fileinfo/134/13415.html

 Lesson Fourteen: Inputting Binary Numbers, Displaying Full-Sized Pictures, If You Just Have to Have More RAM 9

 By the way, for the purpose of these lessons, we will be using a lot
of B_CALL functions, since they are excellent for beginners. However,
don’t get used to them. To be quite frank, they are slow. If you use too
many of them, your program will be un-optimized and not many people
will want to use it. Nonetheless, with what we are doing, B_CALLS
will be fine. You’ll learn in the appendixes some tips and tricks you can
use to avoid B_CALLS.

#include “ti83plus.inc”

.org $9D93

.db t2ByteTok, tAsmCmp

 B_CALL _RunIndicOff ;Turns off the little bar you see running at the side of the screen

 LD HL, Full_Sized_Picture ;Make sure you have a 96 x 64 picture.

 LD DE, plotsscreen

 LD BC, 768

 LDIR

 B_CALL _GrBufCpy

 B_CALL _getKey

 B_CALL _ClrLCDFull

 B_CALL _DispDone ;Displays the word "Done" at the end of the program

 ret

 Lesson Fourteen: Inputting Binary Numbers, Displaying Full-Sized Pictures, If You Just Have to Have More RAM 10

IF YOU JUST HAVE TO HAVE MORE
RAM

 While you can store variables inside of a program, sometimes this
is not going to be enough for your needs. An ASM program on a Ti-83+
can only be 8 KB in length, meaning that the more space you need
reserved for variables, the less space you’ll have for code and essential
data.

 Fortunately, the Ti-83+ has some RAM reserved for ASM
programs. One of these areas, called appBackUpScreen (another
constant to represent a location, a ram address), holds up to 768 bytes of
RAM. You can use this area for anything you want, and it’s big enough
to hold a picture if need be. Just a quick review, you can store inside the
first byte with appBackUpScreen, the second byte with
appBackUpScreen + 1, etc.

 Don’t forget that you can use constants, too. If you are writing a
Zelda game and you want to store the X and Y position of the character
Link inside of appBackUpScreen, you can do the following:

Link_X .equ appBackUpScreen

Link_Y .equ appBackUpScreen + 1

 Then, of course, you access the values with (Link_X) and
(Link_Y).

 The other area you can use is called saveSScreen, also 768 bytes.
You have to be careful when using this area, making sure that the
calculator does not shut down automatically after 5 minutes. I’ll teach
you how to take care of this later, but for right now, we’ll only use
appBackUpScreen.

 Lesson Fourteen: Inputting Binary Numbers, Displaying Full-Sized Pictures, If You Just Have to Have More RAM 11

 Next lesson, we’ll do some more work on ASM Gorillas.

