T1-83+ Z80 ASM
for the Absolute
Beginner

LESSON SIXTEEN:

« Working With Bits

Lesson Sixteen: Working With Bits

WORKING WITH BITS

Bits of cornflakes? Bits of information? Bitsydur sister’s teddy
bear or stuffed raccoon? Nope, the eight bitsddnrevery byte.

Suppose you have a picture that you finished dyspdausing what
you learned from Lesson 14. Let’'s say you wardréaw a point on the
screen, just a point. Remember that every bit lfgtd) in plotsscreen
refers to a single pixel. So you could draw theapgou want by
turning the appropriate bit on. The question @ylilo you do that?

In the Mario game from tutorial 1, on pages 10wé speculated
having true/false values for whether or not Marmsvewimming, flying,
or had the fire flower. Since each of these cta@acqual to 1 for true or
O for false, we could store each of these as afiteview is below:

Marno 1s: l=Yesor0=No
A= Alive 1
E = Swimming 1
C =Flying 0
D = Has Fire Flower 1
E = Invincible 0
F = At the End of the Level 0

Using six values like this is hard to work with, and vses a lot of RAM.
However, did you notice that there’s only two values for each variable?
In ASM. vou could put these mnto a single varable:

1 1 0 1 0 0

Alive, Swimmung, Flying, Has Fire Flower, Invincible, End of Level

Lesson Sixteen: Working With Bits

Once again, the question is, if all of a suddemidlia flying, how
do we change the®3'0” to a “1” in order to let the calculator knowvat
Mario is flying? Also, Mario can’t fly and swim #te same time, so
how do we change thé%'1” to a “0” to show that Mario isn't
swimming?

Most of the instructions that you've learned s ifanot all of
them, deal with bytes. This lesson, you'll learstructions that deal
with bits. This is a long lesson, by the way, alcetyour time!

When you have a number one byte long, that ists8dng, the bit
on the far right is bit 0. The bit on the far leftbit 7. So the 8 bits are
labeled, from left to right, 7 to 0. For the Maagample, assume that
Bit 7 is “Mario Alive.”

Bit7, 6, 5 4 3, 2, 1, O
% 1 1 0 1 1 1 0 0
SET Number (From 0 to 7), One-Byte Register

Sets a bit of the one-byte register. In other words, the bit

you choose becomes 1, no matter what.

Examples: LD A, %00001000

SET 7, A ; Anow equals %10001000

T-States: 8, or 15 if One-Byte Byte Storage: 2 Bytes

Register is (HL)

n Lesson Sixteen: Working With Bits

RES Number (From 0 to 7), One-Byte Register

Resets a bit of the one-byte register. In other words, the

bit you choose becomes 0, no matter what.

Examples: LD D, %00001000
RES 3, D ; D now equals %00000000

T-States: 8, or 15 if One-Byte Byte Storage: 2 Bytes
Register is (HL)
BIT Number (From O to 7), One-Byte Register

Checks to see if a particular bit is a one or a zero. The Z
flag is set if the bit is equal to 0, and reset if the bit is equal
to 1. This shows that CP is not the only instruction where
you can use JRZ, JP NZ, CALL Z, etc.

Examples: LD E, %10000000
BIT 7,E

JR NZ, Mario_Is_Alive

T-States: 8, or 12 if One-Byte Byte Storage: 2 Bytes

Register is (HL)

Lesson Sixteen: Working With Bits

This example program will draw a whole bunch oéb on the
graph screen. There will be 48 lines, each 10lpiomg downward. Be
sure to read the comments, as usual.

#include “ti83plus.inc”
.org $9D93
.db t2ByteTok, tAsmCmp

B_CALL _RunIndicOff ;Turns off the little bar you see running at the side of the screen

LD HL, plotsscreen ;Start at the beginning of plotsscreen, in order to draw the lines extending
;downward.

LD B, 0

;For the next part, we could always say “LD B, %10101010. However, for the sake of practice,

:we’ll use the set function instead.

SET7, B
SET5, B
SET 3, B
SET1, B

LD C, 247 ;We want to draw 48 lines 10 pixels long. To do this, we store B into HL 120 times.
;You've learned many, many ways to do this, but we’ll use BIT this time. If bit 7 of C
;is 0, that means we are done. That is because 247 — 120 = 127.
; (127 = %01111111, but 128 = %10000000)

LD (hl), B ;Now the particular set of 8 pixels will have pixel on, pixel off, pixel on, pixel off, etc.
INC HL

DECC

BIT7,C

JR NZ, Loop

B_CALL _GrBufCpy

B_CALL _getKey

B_CALL _CIrLCDFull

B_CALL _DispDone ;Displays the word "Done" at the end of the program

ret

— Lesson Sixteen: Working With Bits

While these 3 functions are convenient and exceftammessing
with and retrieving individual bits, it's a littlemore complicated using
these instructions for groups of 2 or more bits.

To illustrate this, I'm going to use the exampldlé Real-Time
Strategy I'm coding, called Seek And Destroy. I data, in order to
save space and allow faster processing time, 4#Usts to store certain
information needed for the building’s constructtone. Example:

» 1 0 0 O 0 1 0 O

Data needed

Suppose that | put this data into register A. iRgtthe last four
bits together, | wouldvant to end up with register A being a number
between 0 and 15. 0 = %0000, and 15 = %1111.

The problem is, there’s 4 more bits in the numlvefront of the 4
bits | want. If these 4 bits are all equal tol&rt register A will be a
number between 0 and 15. BUT, if even one of tddsis at the
beginning of register A is equal to 1, register Hl iae bigger than 15,
since 15 = %00001111.

So how can we fix this, how do we make sure thafdlir bits at
the front of register A are all zeros? Well, yawld use the following
code on the next page.

Lesson Sixteen: Working With Bits

LD A, (Structure_Build_Time_Data)

RES 7,
RES 6,
RES 5,
RES 4,

That works, but it takes a lot of valuable spacgdar program.
Furthermore, it requires a lot of valuable TIMEywur program—in
other words, that code is slow.

It gets worse. | want to put this number, frono@5, into the last
four bits of register B. (And this can be any nemfsom O to 15 in the
last four bits of A. We don’t know what this numb®) This meand,
want the first four bits of register B to remain untouched in order to
preserve whatever data | have in the first fous bftthat register. (Even
though the registers are different, this is noypathetical situation. |
really had to do this with my program). The codetlie next page can
do that, but can you imagine what a nightmare ulde for speed and
size?

n Lesson Sixteen: Working With Bits

Check_Bit_3 Of A:

BIT 3, A

JR Nz, Set Bit 3 Of B
RES 3,B

JR Check_Bit 2 Of A

Set Bit 3 _Of B:
SET 3,B

Check_Bit_ 2 Of A:

BIT2, A
JR NZ, Set_Bit_ 2_Of B
RES 2, B

JR Check_Bit_1_Of A

Set Bit 2 Of B:
SET 2, B

Check _Bit_ 1 Of A:

BIT1, A
JR NZ, Set Bit_1_Of B
RES 1, B

JR Check_Bit_0_Of A

Set_Bit_1_Of_B:
SET1,B

Check_Bit_ 0_Of A:

BITO, A

JR Nz, Set Bit 0 Of B
RES 0, B

JR Continue

Set_Bit_0_Of_B:
SET 0, B

Continue:

n Lesson Sixteen: Working With Bits

[fis tired

Now that you know why the 3 instructions are nogsod for
groups of bits, I'll show you what is.

I’m going to ask you to think back to your Ti-Bagimogramming.
Do you recall using “and” and “or” in your “If...théstatements?
Perhaps you even used Not and Xor. Let’s jusk stith “and” and
“or” for a few minutes.

Suppose you have the following Ti-Basic program:
fA=1landB=1
Disp“A=1and B =1"

As you might expect, the text “A = 1 and B = 1'bisly going to
display if BOTH A and B are equal to 1. If A = tdaB is some other
random number, the text will not display.

Lesson Sixteen: Working With Bits

What about this code?
IfA=00orB=0
Display “A*B = 0"

Then you have three possibilities when the textldiss: Either A
is equal to O, or B =0, or BOTH of them = 0. Howe if A and B are
both numbers not equal to zero, the text will neplhy.

How about some “fake code” such as below?

If Bit 7 of Register A =1 and Bit 7 of RegisterB=1
Bit 7 of Register A=1
If Bit 6 of Register A =1 and Bit 6 of RegisterB=1
Bit 6 of Register A=1
If Bit 5 of Register A =1 and Bit 5 of Register B=1
Bit 5 of Register A=1
If Bit 4 of Register A =1 and Bit 4 of Register B=1
Bit 4 of Register A=1
If Bit 3 of Register A =1 and Bit 3 of RegisterB=1
Bit 3 of RegisterA=1
If Bit 2 of Register A =1 and Bit 2 of Register B=1
Bit 2 of Register A=1
If Bit 1 of Register A =1 and Bit 1 of Register B=1
Bit 1 of Register A=1

If Bit O of Register A =1 and Bit O of RegisterB=1

Bit O of Register A=1

Lesson Sixteen: Working With Bits

So what that means is, if you take a bit in A aaochpare it with
the same bit in B, they both must be equal to the@vise, the bit in
guestion in A will be 0, no matter what.

Suppose register A = %10011111 and register B =1%0001.
%10011111 ;Register A
and %11100001 ;Regqister B

Result: %10000001 ;The result is stored in regi&ter

As you might guess, if we decide to use “OR” indtghen for
each bit in registers A and B, only one of the tihat we compare needs
to be equal to 1. The particular bit in registewduld be zero only if
the bit in question is equal to zero in both reggistA and B.

%10011110
or %11100000

Result: 911111110

With XOR, available in Z80 ASM, if we compare a fstm A
with the same bit from B, the bit in question viié set to “1” in register
A if the bits from A, B are not equal to each oth#rthey are both equal
to 1 or both equal to 0, the result is “0”.

0610011110
or %11100100

Result: %01111010

Lesson Sixteen: Working With Bits

Exercises: Compute the result (answers on next)page

1. A=%10000101, B = %11100000. A AND B

2. A=%01010111, B = %00111000. AORB

3. A=%01010110, B =%11001010 A XOR B

4. A=%10101010, B = %01101100 A AND B,
A OR B,

A XOR B

Lesson Sixteen: Working With Bits

Answers:
1. %10000000
2.9%01111111
3. %10011100
4. %101000, %11101110, %11000100

Lesson Sixteen: Working With Bits

So what'’s the big deal? After all, in Z80, you tarse and, or,
xor in If-Then statements. Or can you? [I'll tgdlu what the big deal is
after | give you 6 instructions.

AND One-Byte Register

ANDs the one-byte register with register A. The result is stored in
A. Note that you can even AND register A with itself!

Examples: LD A, %00011000
LD C, %11111001

AND C ; Anow equals %00011000

T-States: 4, or 7if One-Byte Byte Storage: 1 Byte

Register is (HL)

AND One-Byte Value

ANDs the one-byte value with register A. The result is stored in A.

Examples: LD A, %00011000

AND %10101010 ; A now equals %00001000

Byte Storage: 2 Bytes

Lesson Sixteen: Working With Bits

OR One-Byte Register

ORs the one-byte register with register A. The result is stored in
A. Note that you can even OR register A with itself!

Examples: LD A, %00011000
LD H, %11111001

OR H ; Anow equals %11111001

T-States: 4, or 7if One-Byte Byte Storage: 1 Byte

Register is (HL)

OR One-Byte Value

ORs the one-byte value with register A. The result is stored in A.

Examples: LD A, %00011000

OR 1; A now equals %00011001

Byte Storage: 2 Bytes

Lesson Sixteen: Working With Bits

XOR One-Byte Register

XORs the one-byte register with register A. The result is stored in
A. Note that you can even XOR register A with itself!

Examples: LD A, %00011000

XOR A ; Anow equals O

T-States: 4, or 7if One-Byte Byte Storage: 1 Byte

Register is (HL)

XOR One-Byte Value

XORs the one-byte value with register A. The result is stored in A.

Examples: LD A, %00011000

XOR %10101010 ; A now equals %10110010

Byte Storage: 2 Bytes

Lesson Sixteen: Working With Bits

WHAT'S THE BIG DEAL #1: We can, of course, use these values to
set, reset, or even flip (O becomes 1 and 1 becOesrtain bits in
register A. If you want to set a bunch of bitsegister A to “1”, OR a
number—Iet’s say register B—to register A. Regi&ehould have a

“1” in each bit you want to set in register A. Fexample, if you have a
number in register A, and you want to make the3dsits ones
WITHOUT changing the values of the top 3 bits, juse the instruction
OR %00011111. This means that if you have a “@'afbit in register

B, the respective bit in register A will be ignoyéghored, ignored.

If you want toreseta bunch of bits in register A to “0”, AND a
number—Iet’s say register B—to register A. Regi&ehould have a
“0” in each bit you want to reset in register Aorfexample, if you have
a number in register A, and you want to make tret i bits zeros
WITHOUT changing the values of the last 4 bits{ juse the instruction
AND %00001111. This means that if you have a ‘ar’d bit in register
B, the respective bit in register A will be ignored

If you want toflip a bunch of bits in register A, XOR a number—
let's say register B—to register A. Register Bidddhave a “1” in each
bit you want to flip in register A. For exampléyou have a number in
register A, and you want to flip the first bit iagister A WITHOUT
changing the values of the last 7 bits, just usdrtstruction XOR
%10000000. This means that if you have a “0” fortan register B,
the respective bit in register A will be ignored.

Exercise: What do you order if you want:

1. To make Bits 7, 5 and 1 of A equal to 1, withouarmhing the rest of
the bits?

2. Toflip bit 6 of register A?

3. To make Bits 3-0 equal to 07?

Lesson Sixteen: Working With Bits

Answers:1. OR %10100010 (You can also use OR @6p
2. XOR %01000000
3. AND %11110000

WHAT'S THE BIG DEAL #2: Indeed, you can use AND, OR
and XOR as If...Then instructions. Of course, yo'tcgo “If this is
true AND this is true OR this is true XOR thisngd.” Sad, but true.
However, just like with bit, you can use AND, iz test and see if
certain bits in a number are the way you want them.

In my S.A.D. code, | sometimes need to see if thbb#s |
mentioned previously are all zeros. To do thigst store the number
in register A, and then use the statement AND %QQ0QQ. This will
clear out the top four bits. Do you know what tlmeans? This means
that if the bottom four bits are all zeros, the memitself will be zero.
And of course, you know what that means: The Z itagpt!

WHAT'S THE BIG DEAL #3: OR A is the same thing as saying
CP 0, and it’s faster and smaller than CP 0. ORilAnever, ever mess
up whatever you have stored in register A, so uaénever you can
instead of CP 0.

XOR A will always, always set A equal to zero. Ganu find out
why? Anyways, this is smaller and faster than LDDA

Lesson Sixteen: Working With Bits

An example program is on this page. Then we haeenaore
thing to learn in this chapter. Yes, it's a lotimformation for one
tutorial, but it will be worth it when you find otihat next lesson will
cover sprites—aka pictures you can move on thesatre

#include “ti83plus.inc”
.org $9D93
.db t2ByteTok, tAsmCmp

B_CALL _RunIndicOff
B_CALL _CIrLCDFull

;The program starts by drawing a completely black screen. Then it draws thick rectangles of alternating

;colors by using AND to turn off certain pixels. Finally, we use XOR to invert the colors of the rectangles,

;S0 that instead of a black rectangle first, we have a white rectangle first.

Id bc, 768
Id a, %11111111 ; All eight pixels in each byte of plotsscreen should be black
Id hl, plotsscreen

Id (hl), a
inc hl

;This next set of instructions will decrease bc by 1. We don't just say “dec bc”, because if we do,

;no flags will be set. We need to use the zero flag to determine if we need to loop or not.

decc
jr nz, Loopl
decb
jrnz, Loopl

;If be is zero, the screen is completely black, so we can display the screen.

push af ;Save the value of register A
B_CALL _GrBufCpy

B_CALL _getKey

pop af

Lesson Sixteen: Working With Bits

and %11110000 ;Now A = %11110000, which will mean that plotsscreen contains
;several black and white rectangles 4 pixels long each.
Id bc, 768 ;Reset the counter and the location stroed in HL

Id hl, plotsscreen

Id (hl), a

inc hl

decc
jr nz, Loop2
decb

jr nz, Loop2

push af ;Save the value of register A
B_CALL _GrBufCpy

B_CALL _getKey

pop af

xor 911111111 ;Now A = %00001111, which will mean that plotsscreen contains

;white rectangles first.
Id bc, 768 :Reset the counter and the location stroed in HL

Id hl, plotsscreen

Id (h), a

inc hl

decc
jr nz, Loop3
decb

jr nz, Loop3

B_CALL _GrBufCpy

B_CALL _getKey

B_CALL _CIrLCDFull
B_CALL _DispDone

Lesson Sixteen: Working With Bits

The last thing you will learn in this lesson is httwmove bits
around a number. Yes, move around, like a merryegod or an
assembly line. What do | mean by that?

Well, an assembly line moves an object, such as,adown a belt.
So if the car starts at the front, the belt wileetually move it to the end
of the line. The car moves from its original pmsitto a different
position.

AS THE BELT MOVES, THE CAR "SHIFTS" FROM
ONE END OF THE ASSEMBLY LINE TO THE
OTHER

Start of the End of the
Assembly Line Assembly Line

Yes, | do want you to remember the term “shift. helcar shifted
forward from its original position, in a single eation.

What about my analogy of the merry-go-round? Wiellou think
about it, when you were on a merry-go-round, yautstl at a certain
point. If you kept going, and the merry-go-round dot break down,
you would eventually reach the point where youtsthrbasically going
around in circles. This is not like “shifting,” whe you go in a single
direction and never return. Instead, you “rotaned circle.

Lesson Sixteen: Working With Bits

Can we do this with bits? YOU BET!

RL One-Byte Register

Rotates the bits in the One-Byte Register once to the left.
Whatever is in the carry flag is put in bit 0, and whatever is in bit 7
is put inside the carry flag.

Examples: ; Suppose the carry flag is set, meaning “1”
LD E, %10011000
RL E ;E now equals %00110001.
;The carry flag is now set, = “1”.
T-States: 8, or 15 if One-Byte Byte Storage: 2 Bytes
Register is (HL)
RLA

This is faster and smaller than RL A, but does exactly the same
thing.

Examples: ; Suppose the carry flag is reset, meaning “0”

LD A, %00011000
RLA ;A now equals %00110000

;The carry flag is now reset, = “0”.

T-States: 4 Byte Storage: 1 Byte

Lesson Sixteen: Working With Bits

RLC One-Byte Register

Rotates the bits in the One-Byte Register once to the left.
Whatever is in bit 7 is put inside the carry flag and bit O.

Examples:
LD E, %01010101
RLC E ;E now equals %10101010
;The carry flag is now reset, = “0”.
T-States: 8, or 15 if One-Byte Byte Storage: 2 Bytes

Register is (HL)

RLCA

This is faster and smaller than RLC A, but does exactly the same

thing.
Examples:
LD A, %10011000
RLA ;A now equals %00110001

;The carry flag is now set, = “1”.

T-States: 4 Byte Storage: 1 Byte

Lesson Sixteen: Working With Bits

For the sake of saving space, | will simply sayt RR, RRA,
RRC, and RRCA do the opposite of RL, RLA, RLC, &IdCA.

SLA One-Byte Register

Shifts the bits in the One-Byte Register once to the left. A zero is
placed in bit 0, and whatever is in bit 7 is put inside the carry flag.

Examples:
LD D, %10011000
SLA D ;D now equals %00110000
;The carry flag is now set, = “1”.
T-States: 8, or 15 if One-Byte Byte Storage: 2 Bytes

Register is (HL)

SRL One-Byte Register

Shifts the bits in the One-Byte Register once to the left. A zero is
placed in bit 7, and whatever is in bit O is put inside the carry flag.

Examples:
LD B, %10011000
SRL B ;B now equals %01001100
;The carry flag is now reset, = “0”.
T-States: 8, or 15 if One-Byte Byte Storage: 2 Bytes

Register is (HL)

Lesson Sixteen: Working With Bits

There are many purposes for shifting and rotdbitgy Two
of the most common are for drawing sprites andraltiplying/dividing
by powers of two (meaning diving by 2, 4, 8, 16, G2, etc.) We will
learn how to use shifting/rotating for sprites niesison. The next
example program will demonstrate multiplication a@msion by
powers of two. But to understand the concepttheyfollowing 6 math
problems, and feel free to use a calculator:

1.2000/10
2000/ 100
2000 /1000
2*10

2*100

o g~ W N

2*1000

You will notice that in problem one, the answer \288: what
you did was shift the “2” one place to the rigi&thd when you divided
by 100 (meaning 10 * 10), you shifted the “2” TW@ges to the right!
So as you can probably guess, when you divide by1ID* 10, you
shift three places to the right.

When you multiply by 10, you shift 1 place to thERET. So when
you multiply by 10 * 10 * 10, you shift 3 placesttte left.

However, this is when you're dealing with decimahrbers. In
binary numbers, multiplying by 2 will shift one pkato the left,
multiplying by 2 * 2 will shifttwo places to the left, dividing by 2 * 2 *
2 will shift 3 places to the RIGHT, and so on andath.

Lesson Sixteen: Working With Bits

#include “ti83plus.inc”
.org $9D93
.db t2ByteTok, tAsmCmp

B_CALL _RunlIndicOff
B_CALL _CIrLCDFull

Id a, 5

;We will now compute 5 * 16.

slaal\slaa\slaa\slaa\slaa ;Use a backslash to put multiple commands on the same line.

Id h,O

Id I, a

B_CALL _DispHL
B_CALL _getKey
B_CALL _CIrLCDFull

Id a, 128

;We will now compute 128 divided by 64.

srla\srla\srla

srla\srla\srla

Id h,0

d I, a

B_CALL _DispHL
B_CALL _getKey
B_CALL _CIrLCDFull

ret

Lesson Sixteen: Working With Bits

