
 Lesson Sixteen: Working With Bits 1

TI-83+ Z80 ASM
for the Absolute

Beginner

LESSON SIXTEEN:

• Working With Bits

 Lesson Sixteen: Working With Bits 2

WORKING WITH BITS

Bits of cornflakes? Bits of information? Bits of your sister’s teddy
bear or stuffed raccoon? Nope, the eight bits found in every byte.

Suppose you have a picture that you finished displaying using what
you learned from Lesson 14. Let’s say you want to draw a point on the
screen, just a point. Remember that every bit (not byte) in plotsscreen
refers to a single pixel. So you could draw the point you want by
turning the appropriate bit on. The question is, how do you do that?

In the Mario game from tutorial 1, on pages 10-11, we speculated
having true/false values for whether or not Mario was swimming, flying,
or had the fire flower. Since each of these could be equal to 1 for true or
0 for false, we could store each of these as a bit. A review is below:

 Lesson Sixteen: Working With Bits 3

 Once again, the question is, if all of a sudden Mario is flying, how
do we change the 3rd “0” to a “1” in order to let the calculator know that
Mario is flying? Also, Mario can’t fly and swim at the same time, so
how do we change the 2nd “1” to a “0” to show that Mario isn’t
swimming?

 Most of the instructions that you’ve learned so far, if not all of
them, deal with bytes. This lesson, you’ll learn instructions that deal
with bits. This is a long lesson, by the way, so take your time!

 When you have a number one byte long, that is, 8 bits long, the bit
on the far right is bit 0. The bit on the far left is bit 7. So the 8 bits are
labeled, from left to right, 7 to 0. For the Mario example, assume that
Bit 7 is “Mario Alive.”

 Bit 7, 6, 5, 4, 3, 2, 1, 0

% 1 1 0 1 1 1 0 0

SET Number (From 0 to 7), One-Byte Register

Sets a bit of the one-byte register. In other words, the bit

you choose becomes 1, no matter what.

Examples: LD A, %00001000

 SET 7, A ; A now equals %10001000

T-States: 8, or 15 if One-Byte Byte Storage: 2 Bytes

 Register is (HL)

 Lesson Sixteen: Working With Bits 4

RES Number (From 0 to 7), One-Byte Register

Resets a bit of the one-byte register. In other words, the

bit you choose becomes 0, no matter what.

Examples: LD D, %00001000

 RES 3, D ; D now equals %00000000

T-States: 8, or 15 if One-Byte Byte Storage: 2 Bytes

 Register is (HL)

BIT Number (From 0 to 7), One-Byte Register

Checks to see if a particular bit is a one or a zero. The Z

flag is set if the bit is equal to 0, and reset if the bit is equal

to 1. This shows that CP is not the only instruction where

you can use JR Z, JP NZ, CALL Z, etc.

Examples: LD E, %10000000

 BIT 7, E

 JR NZ, Mario_Is_Alive

T-States: 8, or 12 if One-Byte Byte Storage: 2 Bytes

 Register is (HL)

 Lesson Sixteen: Working With Bits 5

 This example program will draw a whole bunch of lines on the
graph screen. There will be 48 lines, each 10 pixels long downward. Be
sure to read the comments, as usual.

#include “ti83plus.inc”

.org $9D93

.db t2ByteTok, tAsmCmp

 B_CALL _RunIndicOff ;Turns off the little bar you see running at the side of the screen

 LD HL, plotsscreen ;Start at the beginning of plotsscreen, in order to draw the lines extending

 ;downward.

 LD B, 0

 ;For the next part, we could always say “LD B, %10101010. However, for the sake of practice,

 ;we’ll use the set function instead.

 SET 7, B

 SET 5, B

 SET 3, B

 SET 1, B

 LD C, 247 ;We want to draw 48 lines 10 pixels long. To do this, we store B into HL 120 times.

 ;You’ve learned many, many ways to do this, but we’ll use BIT this time. If bit 7 of C

 ;is 0, that means we are done. That is because 247 – 120 = 127.

 ; (127 = %01111111, but 128 = %10000000)

Loop:

 LD (hl), B ;Now the particular set of 8 pixels will have pixel on, pixel off, pixel on, pixel off, etc.

 INC HL

 DEC C

 BIT 7, C

 JR NZ, Loop

 B_CALL _GrBufCpy

 B_CALL _getKey

 B_CALL _ClrLCDFull

 B_CALL _DispDone ;Displays the word "Done" at the end of the program

 ret

 Lesson Sixteen: Working With Bits 6

While these 3 functions are convenient and excellent for messing
with and retrieving individual bits, it’s a little more complicated using
these instructions for groups of 2 or more bits.

To illustrate this, I’m going to use the example of the Real-Time
Strategy I’m coding, called Seek And Destroy. In my data, in order to
save space and allow faster processing time, I use 4 bits to store certain
information needed for the building’s construction time. Example:

% 1 0 0 0 0 1 0 0

 Data needed

Suppose that I put this data into register A. Putting the last four
bits together, I would want to end up with register A being a number
between 0 and 15. 0 = %0000, and 15 = %1111.

The problem is, there’s 4 more bits in the number, in front of the 4
bits I want. If these 4 bits are all equal to 0, then register A will be a
number between 0 and 15. BUT, if even one of these 4 bits at the
beginning of register A is equal to 1, register A will be bigger than 15,
since 15 = %00001111.

So how can we fix this, how do we make sure that the four bits at
the front of register A are all zeros? Well, you could use the following
code on the next page.

 Lesson Sixteen: Working With Bits 7

That works, but it takes a lot of valuable space in your program.
Furthermore, it requires a lot of valuable TIME in your program—in
other words, that code is slow.

It gets worse. I want to put this number, from 0 to 15, into the last
four bits of register B. (And this can be any number from 0 to 15 in the
last four bits of A. We don’t know what this number is.) This means, I
want the first four bits of register B to remain untouched, in order to
preserve whatever data I have in the first four bits of that register. (Even
though the registers are different, this is not a hypothetical situation. I
really had to do this with my program). The code on the next page can
do that, but can you imagine what a nightmare it would be for speed and
size?

LD A, (Structure_Build_Time_Data)

RES 7, A

RES 6, A

RES 5, A

RES 4, A

 Lesson Sixteen: Working With Bits 8

Check_Bit_3_Of_A:

 BIT 3, A

 JR NZ, Set_Bit_3_Of_B

 RES 3, B

 JR Check_Bit_2_Of_A

Set_Bit_3_Of_B:

 SET 3, B

Check_Bit_2_Of_A:

 BIT 2, A

 JR NZ, Set_Bit_2_Of_B

 RES 2, B

 JR Check_Bit_1_Of_A

Set_Bit_2_Of_B:

 SET 2, B

Check_Bit_1_Of_A:

 BIT 1, A

 JR NZ, Set_Bit_1_Of_B

 RES 1, B

 JR Check_Bit_0_Of_A

Set_Bit_1_Of_B:

 SET 1, B

Check_Bit_0_Of_A:

 BIT 0, A

 JR NZ, Set_Bit_0_Of_B

 RES 0, B

 JR Continue

Set_Bit_0_Of_B:

 SET 0, B

Continue:

 Lesson Sixteen: Working With Bits 9

Now that you know why the 3 instructions are not so good for
groups of bits, I’ll show you what is.

I’m going to ask you to think back to your Ti-Basic programming.
Do you recall using “and” and “or” in your “If…then” statements?
Perhaps you even used Not and Xor. Let’s just stick with “and” and
“or” for a few minutes.

Suppose you have the following Ti-Basic program:

If A = 1 and B = 1

Disp “A = 1 and B = 1”

As you might expect, the text “A = 1 and B = 1” is only going to
display if BOTH A and B are equal to 1. If A = 1 and B is some other
random number, the text will not display.

 Lesson Sixteen: Working With Bits 10

What about this code?

 If A = 0 or B = 0

 Display “A * B = 0”

Then you have three possibilities when the text displays: Either A
is equal to 0, or B = 0, or BOTH of them = 0. However, if A and B are
both numbers not equal to zero, the text will not display.

How about some “fake code” such as below?

If Bit 7 of Register A = 1 and Bit 7 of Register B = 1

Bit 7 of Register A = 1

If Bit 6 of Register A = 1 and Bit 6 of Register B = 1

Bit 6 of Register A = 1

If Bit 5 of Register A = 1 and Bit 5 of Register B = 1

Bit 5 of Register A = 1

If Bit 4 of Register A = 1 and Bit 4 of Register B = 1

Bit 4 of Register A = 1

If Bit 3 of Register A = 1 and Bit 3 of Register B = 1

Bit 3 of Register A = 1

If Bit 2 of Register A = 1 and Bit 2 of Register B = 1

Bit 2 of Register A = 1

If Bit 1 of Register A = 1 and Bit 1 of Register B = 1

Bit 1 of Register A = 1

If Bit 0 of Register A = 1 and Bit 0 of Register B = 1

Bit 0 of Register A = 1

 Lesson Sixteen: Working With Bits 11

So what that means is, if you take a bit in A and compare it with
the same bit in B, they both must be equal to 1. Otherwise, the bit in
question in A will be 0, no matter what.

Suppose register A = %10011111 and register B = %11100001.

 %10011111 ;Register A

 and %11100001 ;Register B

Result: %10000001 ;The result is stored in register A

As you might guess, if we decide to use “OR” instead, then for
each bit in registers A and B, only one of the two that we compare needs
to be equal to 1. The particular bit in register A would be zero only if
the bit in question is equal to zero in both registers A and B.

 %10011110

 or %11100000

Result: %11111110

With XOR, available in Z80 ASM, if we compare a bit from A
with the same bit from B, the bit in question will be set to “1” in register
A if the bits from A, B are not equal to each other. If they are both equal
to 1 or both equal to 0, the result is “0”.

 %10011110

 or %11100100

Result: %01111010

 Lesson Sixteen: Working With Bits 12

Exercises: Compute the result (answers on next page):

1. A = %10000101, B = %11100000. A AND B

2. A = %01010111, B = %00111000. A OR B

3. A = %01010110, B = %11001010 A XOR B

4. A = %10101010, B = %01101100 A AND B,

A OR B,

A XOR B

 Lesson Sixteen: Working With Bits 13

Answers:

1. %10000000

2. %01111111

3. %10011100

 4. %101000, %11101110, %11000100

 Lesson Sixteen: Working With Bits 14

So what’s the big deal? After all, in Z80, you can’t use and, or,
xor in If-Then statements. Or can you? I’ll tell you what the big deal is
after I give you 6 instructions.

AND One-Byte Register

ANDs the one-byte register with register A. The result is stored in

A. Note that you can even AND register A with itself!

Examples: LD A, %00011000

 LD C, %11111001

 AND C ; A now equals %00011000

T-States: 4, or 7 if One-Byte Byte Storage: 1 Byte

 Register is (HL)

AND One-Byte Value

ANDs the one-byte value with register A. The result is stored in A.

Examples: LD A, %00011000

 AND %10101010 ; A now equals %00001000

T-States: 7 Byte Storage: 2 Bytes

 Lesson Sixteen: Working With Bits 15

OR One-Byte Register

ORs the one-byte register with register A. The result is stored in

A. Note that you can even OR register A with itself!

Examples: LD A, %00011000

 LD H, %11111001

 OR H ; A now equals %11111001

T-States: 4, or 7 if One-Byte Byte Storage: 1 Byte

 Register is (HL)

OR One-Byte Value

ORs the one-byte value with register A. The result is stored in A.

Examples: LD A, %00011000

 OR 1; A now equals %00011001

T-States: 7 Byte Storage: 2 Bytes

 Lesson Sixteen: Working With Bits 16

XOR One-Byte Register

XORs the one-byte register with register A. The result is stored in

A. Note that you can even XOR register A with itself!

Examples: LD A, %00011000

 XOR A ; A now equals 0

T-States: 4, or 7 if One-Byte Byte Storage: 1 Byte

 Register is (HL)

XOR One-Byte Value

XORs the one-byte value with register A. The result is stored in A.

Examples: LD A, %00011000

 XOR %10101010 ; A now equals %10110010

T-States: 7 Byte Storage: 2 Bytes

 Lesson Sixteen: Working With Bits 17

WHAT’S THE BIG DEAL #1: We can, of course, use these values to
set, reset, or even flip (0 becomes 1 and 1 becomes 0) certain bits in
register A. If you want to set a bunch of bits in register A to “1”, OR a
number—let’s say register B—to register A. Register B should have a
“1” in each bit you want to set in register A. For example, if you have a
number in register A, and you want to make the last 5 bits ones
WITHOUT changing the values of the top 3 bits, just use the instruction
OR %00011111. This means that if you have a “0” for a bit in register
B, the respective bit in register A will be ignored, ignored, ignored.

If you want to reset a bunch of bits in register A to “0”, AND a
number—let’s say register B—to register A. Register B should have a
“0” in each bit you want to reset in register A. For example, if you have
a number in register A, and you want to make the first 4 bits zeros
WITHOUT changing the values of the last 4 bits, just use the instruction
AND %00001111. This means that if you have a “1” for a bit in register
B, the respective bit in register A will be ignored.

If you want to flip a bunch of bits in register A, XOR a number—
let’s say register B—to register A. Register B should have a “1” in each
bit you want to flip in register A. For example, if you have a number in
register A, and you want to flip the first bit in register A WITHOUT
changing the values of the last 7 bits, just use the instruction XOR
%10000000. This means that if you have a “0” for a bit in register B,
the respective bit in register A will be ignored.

Exercise: What do you order if you want:

1. To make Bits 7, 5 and 1 of A equal to 1, without changing the rest of
the bits?

2. To flip bit 6 of register A?

3. To make Bits 3-0 equal to 0?

 Lesson Sixteen: Working With Bits 18

Answers: 1. OR %10100010 (You can also use OR 162 ☺)

2. XOR %01000000

3. AND %11110000

WHAT’S THE BIG DEAL #2: Indeed, you can use AND, OR
and XOR as If…Then instructions. Of course, you can’t go “If this is
true AND this is true OR this is true XOR this is true.” Sad, but true.
However, just like with bit, you can use AND, etc. to test and see if
certain bits in a number are the way you want them.

In my S.A.D. code, I sometimes need to see if those 4 bits I
mentioned previously are all zeros. To do this, I first store the number
in register A, and then use the statement AND %00001111. This will
clear out the top four bits. Do you know what this means? This means
that if the bottom four bits are all zeros, the number itself will be zero.
And of course, you know what that means: The Z flag is set!

WHAT’S THE BIG DEAL #3: OR A is the same thing as saying
CP 0, and it’s faster and smaller than CP 0. OR A will never, ever mess
up whatever you have stored in register A, so use it whenever you can
instead of CP 0.

XOR A will always, always set A equal to zero. Can you find out
why? Anyways, this is smaller and faster than LD A, 0.

 Lesson Sixteen: Working With Bits 19

An example program is on this page. Then we have one more
thing to learn in this chapter. Yes, it’s a lot of information for one
tutorial, but it will be worth it when you find out that next lesson will
cover sprites—aka pictures you can move on the screen!

#include “ti83plus.inc”

.org $9D93

.db t2ByteTok, tAsmCmp

 B_CALL _RunIndicOff

 B_CALL _ClrLCDFull

 ;The program starts by drawing a completely black screen. Then it draws thick rectangles of alternating

 ;colors by using AND to turn off certain pixels. Finally, we use XOR to invert the colors of the rectangles,

 ;so that instead of a black rectangle first, we have a white rectangle first.

 ld bc, 768

 ld a, %11111111 ; All eight pixels in each byte of plotsscreen should be black

 ld hl, plotsscreen

Loop1:

 ld (hl), a

 inc hl

 ;This next set of instructions will decrease bc by 1. We don’t just say “dec bc”, because if we do,

 ;no flags will be set. We need to use the zero flag to determine if we need to loop or not.

 dec c

 jr nz, Loop1

 dec b

 jr nz, Loop1

 ;If bc is zero, the screen is completely black, so we can display the screen.

 push af ;Save the value of register A

 B_CALL _GrBufCpy

 B_CALL _getKey

 pop af

 Lesson Sixteen: Working With Bits 20

and %11110000 ;Now A = %11110000, which will mean that plotsscreen contains

 ;several black and white rectangles 4 pixels long each.

 ld bc, 768 ;Reset the counter and the location stroed in HL

 ld hl, plotsscreen

Loop2:

 ld (hl), a

 inc hl

 dec c

 jr nz, Loop2

 dec b

 jr nz, Loop2

 push af ;Save the value of register A

 B_CALL _GrBufCpy

 B_CALL _getKey

 pop af

 xor %11111111 ;Now A = %00001111, which will mean that plotsscreen contains

 ;white rectangles first.

 ld bc, 768 ;Reset the counter and the location stroed in HL

 ld hl, plotsscreen

Loop3:

 ld (hl), a

 inc hl

 dec c

 jr nz, Loop3

 dec b

 jr nz, Loop3

 B_CALL _GrBufCpy

 B_CALL _getKey

 B_CALL _ClrLCDFull

 B_CALL _DispDone

 ret

 Lesson Sixteen: Working With Bits 21

The last thing you will learn in this lesson is how to move bits
around a number. Yes, move around, like a merry-go-round or an
assembly line. What do I mean by that?

Well, an assembly line moves an object, such as a car, down a belt.
So if the car starts at the front, the belt will eventually move it to the end
of the line. The car moves from its original position to a different
position.

Yes, I do want you to remember the term “shift.” The car shifted
forward from its original position, in a single direction.

What about my analogy of the merry-go-round? Well, if you think
about it, when you were on a merry-go-round, you started at a certain
point. If you kept going, and the merry-go-round did not break down,
you would eventually reach the point where you started, basically going
around in circles. This is not like “shifting,” where you go in a single
direction and never return. Instead, you “rotate” in a circle.

 Lesson Sixteen: Working With Bits 22

Can we do this with bits? YOU BET!

RL One-Byte Register

Rotates the bits in the One-Byte Register once to the left.

Whatever is in the carry flag is put in bit 0, and whatever is in bit 7

is put inside the carry flag.

Examples: ; Suppose the carry flag is set, meaning “1”

 LD E, %10011000

 RL E ;E now equals %00110001.

 ;The carry flag is now set, = “1”.

T-States: 8, or 15 if One-Byte Byte Storage: 2 Bytes

 Register is (HL)

RLA

This is faster and smaller than RL A, but does exactly the same

thing.

Examples: ; Suppose the carry flag is reset, meaning “0”

 LD A, %00011000

 RLA ;A now equals %00110000

 ;The carry flag is now reset, = “0”.

T-States: 4 Byte Storage: 1 Byte

 Lesson Sixteen: Working With Bits 23

RLC One-Byte Register

Rotates the bits in the One-Byte Register once to the left.

Whatever is in bit 7 is put inside the carry flag and bit 0.

Examples:

 LD E, %01010101

 RLC E ;E now equals %10101010

 ;The carry flag is now reset, = “0”.

T-States: 8, or 15 if One-Byte Byte Storage: 2 Bytes

 Register is (HL)

RLCA

This is faster and smaller than RLC A, but does exactly the same

thing.

Examples:

 LD A, %10011000

 RLA ;A now equals %00110001

 ;The carry flag is now set, = “1”.

T-States: 4 Byte Storage: 1 Byte

 Lesson Sixteen: Working With Bits 24

For the sake of saving space, I will simply say that RR, RRA,
RRC, and RRCA do the opposite of RL, RLA, RLC, and RLCA.

SLA One-Byte Register

Shifts the bits in the One-Byte Register once to the left. A zero is

placed in bit 0, and whatever is in bit 7 is put inside the carry flag.

Examples:

 LD D, %10011000

 SLA D ;D now equals %00110000

 ;The carry flag is now set, = “1”.

T-States: 8, or 15 if One-Byte Byte Storage: 2 Bytes

 Register is (HL)

SRL One-Byte Register

Shifts the bits in the One-Byte Register once to the left. A zero is

placed in bit 7, and whatever is in bit 0 is put inside the carry flag.

Examples:

 LD B, %10011000

 SRL B ;B now equals %01001100

 ;The carry flag is now reset, = “0”.

T-States: 8, or 15 if One-Byte Byte Storage: 2 Bytes

 Register is (HL)

 Lesson Sixteen: Working With Bits 25

 There are many purposes for shifting and rotating bits. Two
of the most common are for drawing sprites and for multiplying/dividing
by powers of two (meaning diving by 2, 4, 8, 16, 32, 64, etc.) We will
learn how to use shifting/rotating for sprites next lesson. The next
example program will demonstrate multiplication and division by
powers of two. But to understand the concept, try the following 6 math
problems, and feel free to use a calculator:

1. 2000 / 10

2. 2000 / 100

3. 2000 / 1000

4. 2*10

5. 2*100

6. 2*1000

You will notice that in problem one, the answer was 200: what
you did was shift the “2” one place to the right! And when you divided
by 100 (meaning 10 * 10), you shifted the “2” TWO places to the right!
So as you can probably guess, when you divide by 10 * 10 * 10, you
shift three places to the right.

When you multiply by 10, you shift 1 place to the LEFT. So when
you multiply by 10 * 10 * 10, you shift 3 places to the left.

However, this is when you’re dealing with decimal numbers. In
binary numbers, multiplying by 2 will shift one place to the left,
multiplying by 2 * 2 will shift two places to the left, dividing by 2 * 2 *
2 will shift 3 places to the RIGHT, and so on and so forth.

 Lesson Sixteen: Working With Bits 26

#include “ti83plus.inc”

.org $9D93

.db t2ByteTok, tAsmCmp

 B_CALL _RunIndicOff

 B_CALL _ClrLCDFull

 ld a, 5

 ;We will now compute 5 * 16.

 sla a \ sla a \ sla a \ sla a \ sla a ;Use a backslash to put multiple commands on the same line.

 ld h, 0

 ld l, a

 B_CALL _DispHL

 B_CALL _getKey

 B_CALL _ClrLCDFull

 ld a, 128

 ;We will now compute 128 divided by 64.

 srl a \ srl a \ srl a

 srl a \ srl a \ srl a

 ld h, 0

 ld l, a

 B_CALL _DispHL

 B_CALL _getKey

 B_CALL _ClrLCDFull

 ret

 Lesson Sixteen: Working With Bits 27

