
TI-83+ Z80 ASM
for the Absolute

Beginner

LESSON THIRTEEN:

• Of Mice and Men: The Sequel

• ASM Gorillas, Part IV: Using Keys to
Navigate Through the Menus

 Lesson Thirteen: Of Mice and Men (The Sequel), ASM Gorillas Part IV 2

OF MICE AND MEN: THE SEQUEL
 This time, we will not be speaking “Of Registers and RAM.” We
will be speaking “Of Calls and the Stack.” Remember that the stack is
what holds values that are “pushed,” saving the values of registers that
we want to save. We “pop” a value from the stack to recall it.

 The Ti-83+ processor has a special register called PC, a register
which is used only by the processor (you absolutely cannot use it in your
program). Do you remember from lesson 4-5 that your ASM program
runs in RAM, starting at $9D93? And that the more the program runs,
the further in RAM you go? This value, the place in RAM containing
the code being executed at the time, is kept track of in register PC. So
when your program starts “officially” at RAM address $9D95, PC will
be $9D95. After 100 instructions each 1 byte long, PC will be equal to
$9DF9. ($9D95 + 100 equals $9DF9)

PC doesn’t just hold the value of where the program is running, but
the program will run exactly what PC tells it to run. If you were
somehow able to change PC to be equal to $E470, the calculator would
run whatever was stored at $E470.

 What’s the big deal? Well, when you use the instruction CALL
Label_Routine, then exit the function Label_Routine with the instruction
RET, the program needs to know where to return. As you might expect,
it should return to where the program initiated the call. So if you,
hypothetically, have CALL Play_Game at $9E46, PC will at that
particular time equal $9E46. Then when you RET from Play_Game to
return to the main program, you should return to $9E49. (This is
because you want to return to whatever is AFTER the CALL instruction,
and the CALL instruction takes 3 bytes. $9E46 + 3 = $9E49.)

 Lesson Thirteen: Of Mice and Men (The Sequel), ASM Gorillas Part IV 3

 But the calculator needs to remember that PC will equal $9E49
when it returns! Otherwise, when the calculator reaches the instruction
“RET”, it will jump to some random place because it doesn’t remember
where to return! So when you use CALL, the value in register PC is
pushed onto the stack, where you store values of other 2-Byte registers.
Then the location of your routine (such as Play_Game) is, afterwards,
stored in PC and your calculator will run the routine. Then when you
RET, that value is popped into PC so your calculator can run from that
point.

 The reason this is so important to remember is CALL uses exactly
the same stack that you use PUSH and POP for when it comes to AF,
HL, BC and DE. It is very important that you don’t accidentally pop the
value that the program was supposed to return to. Otherwise, when you
use a RET instruction, a random value will be popped into PC, and your
calculator will jump to some random address.

 Let’s say you have the following program:

So our stack looks like this:

$9DB4 (Hexadecimal at the top of the stack)

453 (Decimal Number)

LD BC, 453

PUSH BC

CALL Store_Value_Into_HL ; Let’s suppose that this instruction is at the RAM address $9DB1

 ;Then the value $9DB4 will be pushed, since that is where the calculator

 ; needs to return afer finishing “Store_Value_Into_HL.

 Lesson Thirteen: Of Mice and Men (The Sequel), ASM Gorillas Part IV 4

 So say we immediately want to retrieve our saved value from BC.
We call POP BC, but does BC = 453? No! It equals $9DB4, since this
value was at the top of the stack! Furthermore, when the calculator
reaches the instruction “RET”, PC will equal 453! So the calculator will
jump to 453, causing random results in your program.

I’ve made that mistake countless times. When you write an ASM
program, always make sure that you don’t accidentally POP the value of
the place your calculator should return to. Otherwise, your program will
act very strangely, jumping to some random area. And never forget that
RET always pops the top value off the stack

 Lesson Thirteen: Of Mice and Men (The Sequel), ASM Gorillas Part IV 5

ASM GORILLAS, PART IV: USING
KEYS TO NAVIGATE THROUGH

THE MENUS

Last time we worked with ASM Gorillas, we could only display a
certain menu, and we couldn’t switch from menu to menu. We are
going to change that in this lesson. Once again, there are changes I had
to make since the last ASM Gorillas lesson, besides simply adding code.
As good practice, we will simply make these changes in the lesson.

It’s quite obvious that just like a menu has a beginning, it has an
end. Even the extremely long Catalog menu has an end, a “last item” if
you will. (This last item is a question mark.) Now what happens when
your cursor reaches the question mark? What if you press down again?
You’ve reached the end of the menu, so you can’t scroll down anymore.
Instead, the cursor moves to the top of the menu again.

This idea of the menus is the approach we’ll be taking for ASM
Gorilla Menus. When the user makes it to the top of the menu and
presses the up key again, the cursor will move to the bottom of the
menu. Furthermore, when the user makes it to the bottom of the menu
and presses the down key again, the cursor will go to the top of the
menu.

The thing to consider is, not all menus have the same number of
items—some have four items, some have three, and some have five. So
sometimes the last item in the menu will be the fourth one, sometimes
the last item in a menu will be the third item, and sometimes it will be
item number 5. We are going to tell the calculator where the end of the

 Lesson Thirteen: Of Mice and Men (The Sequel), ASM Gorillas Part IV 6

menu is, depending on the menu selected. However, we’re not going to
say “The last item is the fourth item” or “The last item is the fifth item.”
Instead, we’re going to say the following: “When the cursor is pointing
to the last menu item, this is how many pixels down it will be…”

Recall that the first line of text of the menu is displayed at Y = 14.
Also recall that each line of the menu takes up seven pixels. So if a
menu has 4 items, and IF the cursor is at the last item, the cursor will be
at Y = 14 + 7 +7 + 7 = 35. If a menu has 5 items, and IF the cursor is at
the last item, the cursor will be at Y = 14 + 7 + 7 + 7 + 7 = 42.

Go to ASMGorillasConstants.asm, and place your cursor directly
below the line “AI_Difficulty_Menu_Items .equ 5”. Type in the
following (lines in bold have already been typed, so that you know
exactly where to type):

Main_Menu_Items .equ 4

Settings_Menu_Items .equ 4

Players_Menu_Items .equ 3

AI_Or_Human_Menu_Items .equ 3

AI_Difficulty_Menu_Items .equ 5

Main_Menu_End_Of_Menu .equ 35

Settings_Menu_End_Of_Menu .equ 35

Players_Menu_End_Of_Menu .equ 28

AI_Or_Human_Menu_End_Of_Menu .equ 28

AI_Difficulty_Menu_End_Of_Menu .equ 42

Player1NameX .equ 0

Player1NameY .equ 0

Player2NameX .equ 51

 Lesson Thirteen: Of Mice and Men (The Sequel), ASM Gorillas Part IV 7

We just added five new constants. We will use these 5 constants
very soon. For now, we’re going to create a new file.

Create a new file entitled “ASMGorillasStartProgram.asm” As
you can imagine, this will be code that is run ONCE at a time, rather
than over and over. Consider it “setup” code.

Open “ASMGorillasMain.asm”, and add the following line after
#include “ti83plus.inc”

#include "ASMGorillasStartProgram.asm"

 B_CALL _ClrLCDFull ;Clears the screen

 B_CALL _RunIndicOff ;Turns off the little line you usually see running at the upper-right hand corner

 ;of the screen

Display_New_Menu:

 ld d, MainMenuItem1X

 ld e, MainMenuItem1Y

 ld c, a ;Saves the value of our menu for later

 call Menu_Before_Game

 jr Display_New_Menu

Quit_Program:

 B_CALL _ClrLCDFull

 ret

 Lesson Thirteen: Of Mice and Men (The Sequel), ASM Gorillas Part IV 8

Add the following into your list of variables in this file:

End_Of_Menu:

.db 0

Finally, go to “ASMGorillasMenus.asm” and replace the top four
lines with the following line:

Menu_Before_Game:

 Menu_Before_Game is a label that the program will jump to when
it needs to display a different menu. For instance, if the user needs to go
from the Main Menu to the Settings Menu, the program will jump to
Menu_Before_Game.

 Lesson Thirteen: Of Mice and Men (The Sequel), ASM Gorillas Part IV 9

 Now, in ASMGorillasMenus.asm, scroll down the file to
Display_Main_Menu. Once again, the lines below that are not in bold
should be added between the bold lines.

Display_Main_Menu:

 push de ; Saves our menu position, since _ClrLCDFull will destroy whatever is

 ; inside of de

 B_CALL _ClrLCDFull ;This subroutine does NOT clear register C, which is why

 ;we saved register A into register C

 pop de

 ld hl, Main_Menu_Text

 ld b, Main_Menu_Items

 ld a, Main_Menu_End_Of_Menu

 ld (End_Of_Menu), a

 jr Continue_To_Display_Menu

Display_Settings_Menu:

 ld hl, Settings_Menu_Text

 ld b, Settings_Menu_Items

 ld a, Settings_Menu_End_Of_Menu

 ld (End_Of_Menu), a ;CODE CONTINUED ON NEXT PAGE

 jr Continue_To_Display_Menu

 Lesson Thirteen: Of Mice and Men (The Sequel), ASM Gorillas Part IV 10

Display_AI_Or_Human_Menu:

 ld hl, AI_Or_Human_Menu_Text

 ld b, AI_Or_Human_Menu_Items

 ld a, AI_Or_Human_Menu_End_Of_Menu

 ld (End_Of_Menu), a

 jr Continue_To_Display_Menu

Display_Players_Menu:

 ld hl, Players_Menu_Text

 ld b, Players_Menu_Items

 ld a, Players_Menu_End_Of_Menu

 ld (End_Of_Menu), a

 jr Continue_To_Display_Menu

Display_AI_Difficulty_Menu:

 ld hl, AI_Difficulty_Menu_Text

 ld b, AI_Difficulty_Menu_Items

 ld a, AI_Difficulty_Menu_End_Of_Menu

 ld (End_Of_Menu), a

 jr Continue_To_Display_Menu

 Lesson Thirteen: Of Mice and Men (The Sequel), ASM Gorillas Part IV 11

 Do you see what we just did? We just told the calculator where the
end of each menu will be. The calculator will now know at which point
the cursor should no longer scroll down.

 Now go to Continue_To_Display_Menu, and remove the 4 lines
immediately following that label. Then start typing after
Continue_To_Display_Menu. This is where we will add the code to tell
the calculator how to handle keypresses in a menu setting. Incidentally,
I will provide all of “ASMGorillasMenu.asm” at the end of this lesson
so that you can make sure you have everything, in case I missed
something. (I always test my programs before I send out a lesson)

ld a, c

push af

 Remember that register A must contain the menu we need to
display. So we load it from register C. Whatever is stored in Register C
will be erased when the program runs, so we save register A by pushing
af.

call Display_Text_Menu

 Recall that this is the sub that actually draws the menu, depending
on what menu we need to display. So we call this sub so that the menu
will be drawn on the screen.

 Lesson Thirteen: Of Mice and Men (The Sequel), ASM Gorillas Part IV 12

ld a, 14

ld (Menu_Y), a

 Since we use Menu_X and Menu_Y for holding the position of the
cursor, and since the cursor starts at the top (Y = 14), we set the Y cursor
position to 14.

Move_Cursor_Loop:

call Allow_User_To_Move_Cursor

jr Move_Cursor_Loop

 Move_Cursor_Loop is a loop that occurs every time a key is
pressed. This way, we can get one key press after another after another.
In other words, the user presses a key and moves the menu cursor, and
then is allowed to press the key again to move the cursor again.

 Remember, remember, REMEMBER, that when we run “CALL
Allow_User_To_Move_Cursor,” the calculator needs to know where to
return. So the value telling the calculator where to return is pushed onto
the stack. Then when a RET is encountered, this value can be popped
and the calculator will know exactly to return. This is important for our
code later in this lesson.

There is nothing else to type before the label Display_Text_Menu.
Go to the ret statement at this label. It’s the ret after djnz
Display_Text_Menu.

 Lesson Thirteen: Of Mice and Men (The Sequel), ASM Gorillas Part IV 13

Now we’re going to add the sub Allow_User_To_Move_Cursor.
This is responsible for drawing the cursor, and allowing the cursor to
move it up and down.

Allow_User_To_Move_Cursor:

 ld a, 2

 ld (penCol), a

 ld a, (Menu_Y)

 ld (penRow), a

We set the coordinates for the cursor. The cursor will always be
displayed at X = 2, but of course, the Y position will change as the
player moves the cursor up and down.

 ld a, $05 ; The code for the right arrow key

 B_CALL _VPutMap

B_CALL _VPutMap will place a single character, not a string of
text, on the screen. The character we want to display is stored in register

 Lesson Thirteen: Of Mice and Men (The Sequel), ASM Gorillas Part IV 14

A. As another example, if you want to display the character “A” and
only that character, do the following: ld a, $41 B_CALL _VPutMap

B_CALL _getKey

 cp kDown

 jr z, Move_Menu_Cursor_Down

 cp kUp

 jr z, Move_Menu_Cursor_Up

 cp kEnter

 jr z, Menu_Select_Item

 jr Allow_User_To_Move_Cursor

Menu_Select_Item will be a function we add later, selecting what a
user does depending on what item he has selected when the Enter key
has been pressed. Also, if the user presses an illegal key, the function
will restart and wait for another key press.

 Lesson Thirteen: Of Mice and Men (The Sequel), ASM Gorillas Part IV 15

Move_Menu_Cursor_Down:

 ld a, 2

 ld (penCol), a

 ld a, (Menu_Y)

 ld (penRow), a

 ld a, $06 ; The code for the right arrow key

 B_CALL _VPutMap

Character $06 is just a blank space. We use this to clear where our
previous cursor was drawn.

Our next step after the “down” key has been pressed is to see if the
cursor will go too far down the menu. If so, we want to move the cursor
to the top of the menu.

 Lesson Thirteen: Of Mice and Men (The Sequel), ASM Gorillas Part IV 16

Move_Menu_Cursor_Down:

ld a, (End_Of_Menu)

 ld e, a

 ld a, (Menu_Y)

 cp e

 jr nc, Reset_Move_Menu_Cursor_Down

We retrieve how many pixels down the end of the menu is.
Storing this value into register E (to save it), we then look at how many
pixels down the cursor is. CP E means, “Let’s see where the cursor is,
and compare it to where the end of the menu is.” If it turns out that the
cursor is as the end of the menu, we don’t want it to go down any
further! Instead, we move it to the top of the menu.

 add a, 7

 ld (Menu_Y), a

 ret

If the program DOES NOT jump to
Reset_Move_Menu_Cursor_Down, that means the cursor is not at the
end of the menu yet. Thus, we can safely advance the cursor 7 pixels
down. Then we leave the sub to detect another keypress.

 Lesson Thirteen: Of Mice and Men (The Sequel), ASM Gorillas Part IV 17

Reset_Move_Menu_Cursor_Down:

 ld a, 14

 ld (Menu_Y), a

 ret

Recall that the top of the menu is located 14 pixels down. We
reset the cursor to that position if the cursor goes too far down the menu.

Move_Menu_Cursor_Up:

 ld a, 2

 ld (penCol), a

 ld a, (Menu_Y)

 ld (penRow), a

 ld a, $06 ; The code for the right arrow key

 B_CALL _VPutMap

 Lesson Thirteen: Of Mice and Men (The Sequel), ASM Gorillas Part IV 18

 ld a, (Menu_Y)

 sub 7

 cp 7

 jr z, Reset_Move_Menu_Cursor_Up

 ld (Menu_Y), a ;If we aren’t at the top

 ;of the menu and can safely

 ;move up, we already

 ;subtracted 7 pixels and

 ;don’t need to do so again

 ret

Reset_Move_Menu_Cursor_Up:

 ld a, (End_Of_Menu)

 ld (Menu_Y), a ;Resets the cursor

 ;to the bottom of the menu

 ret

 Lesson Thirteen: Of Mice and Men (The Sequel), ASM Gorillas Part IV 19

The only thing I need to explain is the underlined lines. Supposing
that, hypothetically, the cursor is at the top of the menu, Menu_Y will
equal 14. Thus, if “up” is pressed at Y = 14, the cursor will go too far
up, and we want to prevent that.

Of course, just like we move the cursor 7 pixels down when the
down key is pressed, we move the cursor up 7 pixels when the up key is
pressed. SO, if the cursor is at Y = 14, then moving the cursor to
Y = 14 – 7 (in other words, Y = 7) will bring the cursor past the top of
the menu. We subtract 7 from register A = Menu_Y to see if we will
indeed be at Y = 7, past the top of the menu.

Now, what should happen when the enter key is pressed? Well,
there many possible things that could happen, depending on the item
select. For this lesson, we’ll focus on switching from one menu to
another.

 Now, go to the bottom of the file and continue typing this new text.
I’m afraid I won’t be explaining much, because the text is pretty
redundant. However, I have a couple of new things to teach, so I will
explain the lines in bold.

 Lesson Thirteen: Of Mice and Men (The Sequel), ASM Gorillas Part IV 20

Menu_Select_Item:

 ld a, (Menu_Y)

 cp 14 ; If the cursor is at Y = 14, it is pointing to the first item in the menu.

 jr z, First_Item_Selected

 cp 21

 jr z, Second_Item_Selected

 cp 28

 jr z, Third_Item_Selected

 cp 35

 jr z, Fourth_Item_Selected

 cp 42

 jr z, Fifth_Item_Selected

First_Item_Selected:

 pop af ; Since every menu has a different first item, we need to know which menu

 pop af ; the player is currently on. HOWEVER, the first value we popped is NOT the menu the player

; is using. It is the value that was pushed when the program ran

; CALL Allow_User_To_Move_Cursor. We clear this value, since we DO NOT need to return

; to where the call was initiated. Then we pop af again so that register A now holds the menu

; the player currently is on.

 Lesson Thirteen: Of Mice and Men (The Sequel), ASM Gorillas Part IV 21

cp Main_Menu ; Depending on the menu (and register A tells us what the menu is),

 ; either quit the game or go to a different menu

 jr z, Goto_Ai_Or_Human_Menu

 cp AI_Or_Human_Menu

 jr z, Goto_AI_Difficulty_Menu

 cp Ai_Difficulty_Menu

 jr z, Goto_Players_Menu

 ret

Second_Item_Selected:

 pop af

 pop af

 cp Ai_Difficulty_Menu

 jr z, Goto_Players_Menu

 cp AI_Or_Human_Menu

 jr z, Goto_Players_Menu

 ret

 Lesson Thirteen: Of Mice and Men (The Sequel), ASM Gorillas Part IV 22

Third_Item_Selected:

 pop af

 pop af

 cp Players_Menu

 jr z, Goto_AI_Or_Human_Menu

 cp AI_Or_Human_Menu

 jr z, Goto_Main_Menu

 cp Ai_Difficulty_Menu

 jr z, Goto_Players_Menu

 cp Main_Menu

 jr z, Goto_Settings_Menu

 ret

Fourth_Item_Selected:

 pop af

 pop af

 cp Ai_Difficulty_Menu

 jr z, Goto_Players_Menu

 cp Settings_Menu

 jr z, Goto_Main_Menu

 cp Main_Menu

 jr z, Quit_Game_From_Main_Menu

 ret

 Lesson Thirteen: Of Mice and Men (The Sequel), ASM Gorillas Part IV 23

Fifth_Item_Selected:

 pop af

 pop af

 cp Ai_Difficulty_Menu

 jr z, Goto_AI_Or_Human_Menu

 ret

Goto_Ai_Or_Human_Menu: ; We specify a new menu. Then RET will return us to

 ; Display_New_Menu. This is because this is the next value in the stack,

 ; telling the calculator where to return.

 ld a, AI_Or_Human_Menu

 ret

Goto_AI_Difficulty_Menu:

 ld a, AI_Difficulty_Menu

 ret

Goto_Players_Menu:

 ld a, Players_Menu

 ret

Goto_Main_Menu:

 ld a, Main_Menu

 ret

Goto_Settings_Menu:

 ld a, Settings_Menu

 ret

 Lesson Thirteen: Of Mice and Men (The Sequel), ASM Gorillas Part IV 24

 So hopefully, a lot of this is relatively easier to understand.
However, we now need to tell the calculator what to do when the user
selects “QUIT.” To do this, I’m going to introduce a rather interesting
technique.

 Our stack now holds two important values. The top of the stack
holds the value telling the calculator where to return—that is,
somewhere in Display_New_Menu. (The second value tells the
calculator where to go to return to the operating system.) However, we
don’t want to go to Display_New_Menu. We want to quit the game!
We want to go to the label Quit_Program.

 Why don’t we just JP or JR to that label? Because there are still
values in the stack, and we want the first one cleared, or else the
calculator will likely crash.

 We could just pop this value and then jump to
Display_New_Menu. However, I’m going to teach you another way.
Remember how RET pops a value that tells the calculator where to go?
We’re going to force the calculator to go to Quit_Program after a RET is
encountered.

 The calculator has a register called SP. It hold where the top of the
stack is. Whenever we push a value onto the stack, or when we pop a
value, SP is adjusted appropriately, since the stack grows and shrinks.
We can store a value into the stack by using register HL. So we will
store the location of Quit_Program into the top of the stack. Then when
RET is encountered, this value will be popped, and the calculator will
thus go to Quit_Program!

 Lesson Thirteen: Of Mice and Men (The Sequel), ASM Gorillas Part IV 25

Quit_Game_From_Main_Menu:

 pop hl

 ld hl, Quit_Program

 push hl

 ret

 At this point, our lesson is done. Feel free to check the next few
pages, to make sure you have all of ASMGorillasMain.asm typed
correctly.

 Lesson Thirteen: Of Mice and Men (The Sequel), ASM Gorillas Part IV 26

;hl is the location of the menu text
;b is the number of items the menu has
;d contains the X position, the column to display the text at.
;e contains the Y position, the row to display the text at.

Menu_Before_Game:

 push de

 B_CALL _ClrLCDFull

 pop de

 cp Main_Menu
 jr z, Display_Main_Menu
 cp Settings_Menu
 jr z, Display_Settings_Menu
 cp AI_Or_Human_Menu
 jr z, Display_AI_Or_Human_Menu
 cp Players_Menu
 jr z, Display_Players_Menu
 cp AI_Difficulty_Menu
 jr z, Display_AI_Difficulty_Menu

Display_Main_Menu:

 ld hl, Main_Menu_Text
 ld b, Main_Menu_Items
 ld a, Main_Menu_End_Of_Menu
 ld (End_Of_Menu), a

 jr Continue_To_Display_Menu

Display_Settings_Menu:

 ld hl, Settings_Menu_Text
 ld b, Settings_Menu_Items
 ld a, Settings_Menu_End_Of_Menu
 ld (End_Of_Menu), a

 jr Continue_To_Display_Menu

Display_AI_Or_Human_Menu:

 ld hl, AI_Or_Human_Menu_Text
 ld b, AI_Or_Human_Menu_Items
 ld a, AI_Or_Human_Menu_End_Of_Menu
 ld (End_Of_Menu), a

 Lesson Thirteen: Of Mice and Men (The Sequel), ASM Gorillas Part IV 27

 jr Continue_To_Display_Menu

Display_Players_Menu:

 ld hl, Players_Menu_Text
 ld b, Players_Menu_Items
 ld a, Players_Menu_End_Of_Menu
 ld (End_Of_Menu), a

 jr Continue_To_Display_Menu

Display_AI_Difficulty_Menu:

 ld hl, AI_Difficulty_Menu_Text
 ld b, AI_Difficulty_Menu_Items

 ld a, AI_Difficulty_Menu_End_Of_Menu
 ld (End_Of_Menu), a

 jr Continue_To_Display_Menu

Continue_To_Display_Menu:

 ld a, c
 push af

 call Display_Text_Menu

 ;Display the cursor while saving which menu we are
displaying

 ld a, 14
 ld (Menu_Y), a

Move_Cursor_Loop:

 call Allow_User_To_Move_Cursor

 jr Move_Cursor_Loop

Display_Text_Menu:

 ld a, e
 ld (penRow),a
 ld a, d

 Lesson Thirteen: Of Mice and Men (The Sequel), ASM Gorillas Part IV 28

 ld (penCol), a

 ld c, b ;Save the number of menu items
 ;left to display
 ld b, (hl)
 inc hl

 B_CALL _VPutSN

 ld a, e ;Move the text line of text to the next
 ;row
 add a, 7
 ld e, a

 ld b, c
 djnz Display_Text_Menu

 ret

Allow_User_To_Move_Cursor:

 ld a, 2
 ld (penCol), a
 ld a, (Menu_Y)
 ld (penRow), a

 ld a, $05 ; The code for the right arrow key
 B_CALL _VPutMap

 B_CALL _getKey
 cp kDown
 jr z, Move_Menu_Cursor_Down
 cp kUp
 jr z, Move_Menu_Cursor_Up
 cp kEnter
 jr z, Menu_Select_Item
 jr Allow_User_To_Move_Cursor

Move_Menu_Cursor_Down:

 ld a, 2
 ld (penCol), a
 ld a, (Menu_Y)
 ld (penRow), a

 ld a, $06 ; The code for the right arrow key
 B_CALL _VPutMap

 ld a, (End_Of_Menu)

 Lesson Thirteen: Of Mice and Men (The Sequel), ASM Gorillas Part IV 29

 ld e, a
 ld a, (Menu_Y)
 cp e
 jr nc, Reset_Move_Menu_Cursor_Down

 add a, 7
 ld (Menu_Y), a
 ret

Reset_Move_Menu_Cursor_Down:

 ld a, 14
 ld (Menu_Y), a
 ret

Move_Menu_Cursor_Up:

 ld a, 2
 ld (penCol), a
 ld a, (Menu_Y)
 ld (penRow), a

 ld a, $06 ; The code for the right arrow key
 B_CALL _VPutMap

 ld a, (Menu_Y)
 sub 7

 cp 7
 jr z, Reset_Move_Menu_Cursor_Up

 ld (Menu_Y), a
 ret

Reset_Move_Menu_Cursor_Up:

 ld a, (End_Of_Menu)
 ld (Menu_Y), a
 ret

Menu_Select_Item:

 ld a, (Menu_Y)

 cp 14
 jr z, First_Item_Selected
 cp 21
 jr z, Second_Item_Selected
 cp 28
 jr z, Third_Item_Selected
 cp 35
 jr z, Fourth_Item_Selected
 cp 42

 Lesson Thirteen: Of Mice and Men (The Sequel), ASM Gorillas Part IV 30

 jr z, Fifth_Item_Selected

First_Item_Selected:

 pop af
 pop af

 cp Main_Menu
 jr z, Goto_Ai_Or_Human_Menu

 cp AI_Or_Human_Menu
 jr z, Goto_AI_Difficulty_Menu

 cp Ai_Difficulty_Menu
 jr z, Goto_Players_Menu

 ret

Second_Item_Selected:

 pop af
 pop af

 cp Ai_Difficulty_Menu
 jr z, Goto_Players_Menu

 cp AI_Or_Human_Menu
 jr z, Goto_Players_Menu

 ret

Third_Item_Selected:

 pop af
 pop af

 cp Players_Menu
 jr z, Goto_AI_Or_Human_Menu

 cp AI_Or_Human_Menu
 jr z, Goto_Main_Menu

 cp Ai_Difficulty_Menu
 jr z, Goto_Players_Menu

 cp Main_Menu
 jr z, Goto_Settings_Menu

 ret

Fourth_Item_Selected:

 pop af
 pop af

 Lesson Thirteen: Of Mice and Men (The Sequel), ASM Gorillas Part IV 31

 cp Ai_Difficulty_Menu
 jr z, Goto_Players_Menu
 cp Settings_Menu
 jr z, Goto_Main_Menu
 cp Main_Menu
 jr z, Quit_Game_From_Main_Menu

 ret

Fifth_Item_Selected:

 pop af
 pop af

 cp Ai_Difficulty_Menu
 jr z, Goto_AI_Or_Human_Menu

 ret

Goto_Ai_Or_Human_Menu:

 ld a, AI_Or_Human_Menu
 ret

Goto_AI_Difficulty_Menu:

 ld a, AI_Difficulty_Menu
 ret

Goto_Players_Menu:

 ld a, Players_Menu
 ret

Goto_Main_Menu:

 ld a, Main_Menu
 ret

Goto_Settings_Menu:

 ld a, Settings_Menu
 ret

Quit_Game_From_Main_Menu:

 pop hl
 ld hl, Quit_Program
 push hl
 ret

