T1-83+ Z80 ASM
for the Absolute
Beginner

LESSON THIRTEEN:

o Of Mice and Men: The Sequel

« ASM Gorillas, Part IV: Using Keysto
Navigate Through the Menus



Lesson Thirteen: Of Mice and Men (The Sequel), ASM Gorillas Part IV

OF MICE AND MEN: THE SEQUEL

This time, we will not be speaking “Of Registersld&RAM.” We
will be speaking “Of Calls and the Stack.” Remenihat the stack is
what holds values that are “pushed,” saving thaes&bf registers that
we want to save. We “pop” a value from the stacketall it.

The Ti-83+ processor has a special register c&8lleéda register
which is used only by the processor (you absolutalynot use it in your
program). Do you remember from lesson 4-5 that y&M program
runs in RAM, starting at $9D93? And that the mibve program runs,
the further in RAM you go? This value, the placdiAM containing
the code being executed at the time, is kept tohak register PC. So
when your program starts “officially” at RAM addee$9D95, PC will
be $9D95. After 100 instructions each 1 byte Id»@,will be equal to
$ODF9. ($9D95 + 100 equals $9DF9)

PC doesn’t just hold the value of where the progiamnning, but
the program will run exactly what PC tells it to run. If you were
somehow able to change PC to be equal to $E47@athelator would
run whatever was stored at $E470.

What's the big deal? Well, when you use the uttion CALL
Label _Routine, then exit the function Label Routivith the instruction
RET, the program needs to know where to returny@dsmight expect,
it should return to where the program initiated ¢hét. So if you,
hypothetically, have CALL Play _Game at $9E46, PQC atithat
particular time equal $9E46. Then when you RETfifelay Game to
return to the main program, you should return t&4® (This is
because you want to return to whatever is AFTERJAEL instruction,
and the CALL instruction takes 3 bytes. $9E46 +$E49.)



Lesson Thirteen: Of Mice and Men (The Sequel), ASM Gorillas Part IV

But the calculator needs to remember that PCagllial $9E49
when it returns! Otherwise, when the calculataches the instruction
“RET”, it will jump to some random place becausdaesn’t remember
where to return! So when you use CALL, the valueegister PC is
pushed onto the stackwhere you store values of other 2-Byte registers.
Then the location of your routine (such as Play_6xis) afterwards,
stored in PC and your calculator will run the raeti Then when you
RET, that value is popped into PC so your calculeém run from that
point.

The reason this is so important to remember is ICA$es exactly
the same stack that you use PUSH and POP for witemkes to AF,
HL, BC and DE. ltis very important that you doatcidentally pop the
value that the program was supposed to retur®tberwise, when you
use a RET instruction, a random value will be pabip¢o PC, and your
calculator will jump to some random address.

Let’s say you have the following program:

LD BC, 453
PUSH BC
CALL Store Value_Into HL ; Let's suppose that this instruction is at the RAM address $9DB1

;Then the value $9DB4 will be pushed, since that is where the calculator

; needs to return afer finishing “Store_Value_Into_HL.

So our stack looks like this:
$9DB4 (Hexadecimal at the top of the stack)
453 (Decimal Number)



n Lesson Thirteen: Of Mice and Men (The Sequel), ASM Gorillas Part IV

So say we immediately want to retrieve our saaddesfrom BC.
We call POP BC, but does BC = 453? No! It eq$8I3B4, since this
value was at the top of the stack! Furthermoreewihe calculator
reaches the instruction “RET”, PC will equal 453b the calculator will
jump to 453, causing random results in your program

I've made that mistake countless times. When yatevan ASM
program, always make sure that you don’t accidgn®DP the value of
the place your calculator should return to. Othseywyour program will
act very strangely, jumping to some random aread #ever forget that
RET always pops the top value off the stack



Lesson Thirteen: Of Mice and Men (The Sequel), ASM Gorillas Part IV

ASM GORILLAS, PART IV: USING
KEYS TO NAVIGATE THROUGH
THE MENUS

Last time we worked with ASM Gorillas, we could pisplay a
certain menu, and we couldn’t switch from menu enmn We are
going to change that in this lesson. Once agheretare changes | had
to make since the last ASM Gorillas lesson, bessiiaply adding code.
As good practice, we will simply make these changdke lesson.

It's quite obvious that just like a menu has a bamig, it has an
end. Even the extremely long Catalog menu hasdnae®last item” if
you will. (This last item is a question mark.) Wavhat happens when
your cursor reaches the question mark? What ifpress down again?
You've reached the end of the menu, so you candlistown anymore.
Instead, the cursor moves to the top of the meainag

This idea of the menus is the approach we’ll bentakor ASM
Gorilla Menus. When the user makes it to the tofhe@ menu and
presses the up key again, the cursor will movaedobttom of the
menu. Furthermore, when the user makes it to oftefn of the menu
and presses the down key again, the cursor wilbdbe top of the
menu.

The thing to consider is, not all menus have timesaumber of
items—some have four items, some have three, ané save five. So
sometimes the last item in the menu will be thetfoone, sometimes
the last item in a menu will be the third item, aainetimes it will be
item number 5. We are going to tell the calculatbere the end of the



n Lesson Thirteen: Of Mice and Men (The Sequel), ASM Gorillas Part IV

menu is, depending on the menu selected. Howeaare not going to
say “The last item is the fourth item” or “The la&m is the fifth item.”
Instead, we're going to say the following: “Whem tursor is pointing
to the last menu item, this is how many pixels dawmill be...”

Recall that the first line of text of the menu isplayed at Y = 14.
Also recall that each line of the menu takes ugseguixels. So if a
menu has 4 items, and IF the cursor is at thati&st the cursor will be
atY=14+7 +7+7 = 35. If amenu has 5 itear] |IF the cursor is at
the last item, the cursorwillbeatY =14+ 7 +7 + 7 = 42.

Go to ASMGoaorillasConstants.asm, and place yourarutsectly
below the line “Al_Difficulty Menu_ltems .equ 5'Type in the
following (lines in bold have already been typeaalflsat you know
exactly where to type):

Main_Menu_Iltems .equ 4
Settings_Menu_Items .equ 4
Players_Menu_ltems .equ 3
Al_Or_Human_Menu_lIltems .equ 3

Al_Difficulty_Menu_ltems .equ 5

Main_Menu_End_Of Menu .equ 35
Settings_Menu_End_Of Menu .equ 35
Players_Menu_End_Of Menu .equ 28

Al_Or_Human_Menu_End_Of Menu .equ 28

Al_Difficulty_Menu_End_Of_Menu .equ 42

Player1NameX .equ O
Player1NameY .equ O

Player2NameX .equ 51




Lesson Thirteen: Of Mice and Men (The Sequel), ASM Gorillas Part IV

We just added five new constants. We will usedHesonstants
very soon. For now, we’re going to create a ndev fi

Create a new file entitled “ASMGorillasStartProgtaesm” As
you can imagine, this will be code that is run ON&E time, rather
than over and over. Consider it “setup” code.

B_CALL _CIrLCDFull ;Clears the screen

B_CALL _RunIndicOff ;Turns off the little line you usually see running at the upper-right hand corner

;of the screen

Display_New_Menu:

Id d, MainMenultem1X

Id e, MainMenultem1Y

Idc, a ;Saves the value of our menu for later
call Menu_Before_Game

jr Display_New_Menu

Quit_Program:

B_CALL _CIrLCDFull
ret

Open “ASMGorillasMain.asm”, and add the followingd after
#include “ti83plus.inc”

#include "ASMGorillasStartProgram.asm”



n Lesson Thirteen: Of Mice and Men (The Sequel), ASM Gorillas Part IV

Add the following into your list of variables inighfile:

End_Of Menu:
.db 0

Finally, go to “ASMGorillasMenus.asm” and replabte top four
lines with the following line:

Menu_Before _Game:

Menu_Before _Game is a label that the programjwiifip to when
it needs to display a different menu. For instarfdbe user needs to go
from the Main Menu to the Settings Menu, the pragraill jump to
Menu_Before _Game.



n Lesson Thirteen: Of Mice and Men (The Sequel), ASM Gorillas Part IV

Now, in ASMGorillasMenus.asm, scroll down the fite
Display_Main_Menu. Once again, the lines below #ra not in bold
should be added between the bold lines.

Display_Main_Menu:

push de ; Saves our menu position, since _CIrLCDFull will destroy whatever is
; inside of de

B_CALL _CIrLCDFull ;This subroutine does NOT clear register C, which is why
;we saved register A into register C

pop de

Id hl, Main_Menu_Text

Id b, Main_Menu_Items

Id a, Main_Menu_End_Of Menu

Id (End_Of Menu), a

jr Continue_To_Display_Menu

Display_Settings_Menu:

Id hl, Settings_Menu_Text
Id b, Settings_Menu_Items
Id a, Settings_Menu_End_Of _Menu

Id (End_Of_Menu), a :CODE CONTINUED ON NEXT PAGE

jr Continue_To_Display_Menu




Lesson Thirteen: Of Mice and Men (The Sequel), ASM Gorillas Part IV

Display_Al_Or_Human_Menu:

Id hl, Al_Or_Human_Menu_Text
Id b, Al_Or_Human_Menu_ltems
Id a, Al_Or_Human_Menu_End_Of Menu

Id (End_Of Menu), a

jr Continue_To_Display_Menu

Display_Players_Menu:

Id hl, Players_Menu_Text

Id b, Players_Menu_ltems

Id a, Players_Menu_End_Of Menu

Id (End_Of_Menu), a

jr Continue_To_Display_Menu

Display_Al_Difficulty Menu:

Id hl, Al_Difficulty_Menu_Text

Id b, Al_Difficulty_Menu_ltems

Id a, Al_Difficulty Menu_End_Of Menu

Id (End_Of Menu), a

jr Continue_To_Display_Menu




Lesson Thirteen: Of Mice and Men (The Sequel), ASM Gorillas Part IV

Do you see what we just did? We just told thewakor where the
end of each menu will be. The calculator will nekmow at which point
the cursor should no longer scroll down.

Now go to Continue_To_Display Menu, and removedtiiaes
immediately following that label. Then start tygiafter
Continue_To_Display _Menu. This is where we wiltlabe code to tell
the calculator how to handle keypresses in a metiing. Incidentally,
| will provide all of “ASMGorillasMenu.asm” at thend of this lesson
so that you can make sure you have everythingase ¢ missed
something. (I always test my programs before | smrich lesson)

Id a, c

push af

Remember that register A must contain the menoneegl to
display. So we load it from register C. Whategestored in Register C
will be erased when the program runs, so we sayistez A by pushing
af.

call Display_Text Menu

Recall that this is the sub that actually dravesrttenu, depending
on what menu we need to display. So we call thilsso that the menu
will be drawn on the screen.



Lesson Thirteen: Of Mice and Men (The Sequel), ASM Gorillas Part IV

Id a, 14
ld (Menu_Y), a

Since we use Menu_X and Menu_Y for holding thatmosof the
cursor, and since the cursor starts at the top {¥)=we set the Y cursor
position to 14.

Move_ Cursor_Loop:
call Allow_User_To_Move_Cursor

jr Move_Cursor_Loop

Move Cursor_Loop is a loop that occurs every ey is
pressed. This way, we can get one key pressaftaher after another.
In other words, the user presses a key and moeasdéimu cursor, and
then is allowed to press the key again to movetinsor again.

Remember, remember, REMEMBER, that when we runLICA
Allow_User_To_Move_ Cursor,” the calculator need&riow where to
return. So the value telling the calculator whereeturn is pushed onto
the stack. Then when a RET is encountered, thigvaan be popped
and the calculator will know exactly to return. iFts important for our
code later in this lesson.

There is nothing else to type before the label Risplrext Menu.
Go to theret statement at this label. It's the ret after djnz
Display_Text_Menu.



Lesson Thirteen: Of Mice and Men (The Sequel), ASM Gorillas Part IV

Now we’re going to add the sub Allow_User To_ Moversbr.
This is responsible for drawing the cursor, andvaithg the cursor to
move it up and down.

Allow_User _To_ Move_Cursor:

Id a, 2
|d (penCol), a
ld a, (Menu_Y)

ld (penRow), a

We set the coordinates for the cursor. The cuxgdbalways be
displayed at X = 2, but of course, the Y positial ghange as the
player moves the cursor up and down.

Id a, $05 ; The code for the right arrow key
B CALL VPutMap

B_CALL VPutMap will place a single character, mos$tring of
text, on the screen. The character we want tdalisp stored in register



Lesson Thirteen: Of Mice and Men (The Sequel), ASM Gorillas Part IV

A. As another example, if you want to display tharacter “A” and
only that character, do the following: Id a, $41 B\LC VPutMap

B_CALL _getKey

cp kDown
jr z, Move_Menu_Cursor_Down
cp kUp

jr z, Move_Menu_Cursor_Up
cp KEnter

jr z, Menu_Select_Item

jr Allow_User _To_Move_ Cursor

Menu_Select_Item will be a function we add latetesting what a
user does depending on what item he has selected thik Enter key
has been pressed. Also, if the user pressesgalikey, the function
will restart and wait for another key press.



Lesson Thirteen: Of Mice and Men (The Sequel), ASM Gorillas Part IV

Move Menu_Cursor_Down:

Id a, 2

|d (penCol), a
ld a, (Menu_Y)
ld (penRow), a

Id a, $06 ; The code for the right arrow key
B CALL VPutMap

Character $06 is just a blank space. We usedlokear where our
previous cursor was drawn.

Our next step after the “down” key has been pregssauisee if the
cursor will go too far down the menu. If so, weniveo move the cursor
to the top of the menu.



Lesson Thirteen: Of Mice and Men (The Sequel), ASM Gorillas Part IV

Move Menu_Cursor_Down:

Id a, (End_Of Menu)
Id e, a

ld a, (Menu_Y)

cpe

jr nc, Reset_ Move_Menu_Cursor_Down

We retrieve how many pixels down the end of the unsn
Storing this value into register E (to save it), twen look at how many
pixels down the cursor is. CP E means, “Let’'s\gbere the cursor is,
and compare it to where the end of the menu i&it' tirns out that the
cursor is as the end of the meweg don’t want it to go down any
further! Instead, we move it to the top of the menu.

add a, 7
ld (Menu_Y), a

ret

If the program DOES NOT jump to
Reset Move Menu_Cursor_Down, that means the cigsmt at the
end of the menu yet. Thus, we can safely advdreeursor 7 pixels
down. Then we leave the sub to detect anotherrkegp



Lesson Thirteen: Of Mice and Men (The Sequel), ASM Gorillas Part IV

Reset Move Menu_Cursor_Down:

Id a, 14
ld (Menu_Y), a

ret

Recall that the top of the menu is located 14 gixielvn. We
reset the cursor to that position if the cursorsgim® far down the menu.

Move Menu_Cursor_Up:

Id a, 2

|d (penCol), a
ld a, (Menu_Y)
|d (penRow), a

Id a, $06 ; The code for the right arrow key
B CALL VPutMap



Lesson Thirteen: Of Mice and Men (The Sequel), ASM Gorillas Part IV

ld a, (Menu_Y)

sub 7

cp 7

jr z, Reset Move Menu_ Cursor Up

ld (Menu_Y), a ;If we aren’t at the top
;of the menu and can safely
;move up, we already
;subtracted 7 pixels and
;don’t need to do so again

ret

Reset Move Menu_Cursor_Up:

ld a, (End_Of Menu)
Ild (Menu_Y), a ;Resets the cursor
;to the bottom of the menu

ret



Lesson Thirteen: Of Mice and Men (The Sequel), ASM Gorillas Part IV

The only thing | need to explain is the underlitieds. Supposing
that, hypothetically, the cursor is at the tophed menu, Menu_Y will
equal 14. Thus, if “up” is pressed at Y = 14, thiesor will go too far
up, and we want to prevent that.

Of course, just like we move the cursor 7 pixeledavhen the
down key is pressed, we move the cursor up 7 pixeén the up key is
pressed. SO, if the cursoris at Y = 14, then mgwhe cursor to
Y =14 — 7 (in other words, Y = 7) will bring thersor past the top of
the menu. We subtract 7 from register A = Menuo %de if we will
indeed be at Y = 7, past the top of the menu.

Now, what should happen when the enter key is pd&s3Nell,
there many possible things that could happen, diBpgron the item
select. For this lesson, we’ll focus on switchirmgm one menu to
another.

Now, go to the bottom of the file and continueitgpthis new text.
I’'m afraid | won't be explaining much, because tlxt is pretty
redundant. However, | have a couple of new thtogeach, so | will
explain the lines in bold.



Lesson Thirteen: Of Mice and Men (The Sequel), ASM Gorillas Part IV

Menu_Select_Item:

Id a, (Menu_Y)

cp 14 ; If the cursor is at Y = 14, it is pointing to the first item in the menu.
jr z, First_Item_Selected

cp21

jr z, Second_Item_Selected

cp 28

jr z, Third_Item_Selected

cp 35

jr z, Fourth_Item_Selected

cp 42

jr z, Fifth_Item_Selected

First_Item_Selected:

pop af ; Since every menu has a different first item, we need to know which menu

pop af ; the player is currently on. HOWEVER, the first value we popped is NOT the menu the player

; Is using. It is the value that was pushed when the program ran
; CALL Allow_User_To_Move_Cursor. We clear this value, since we DO NOT need to return
; to where the call was initiated. Then we pop af again so that register A now holds the menu

; the player currently is on.




Lesson Thirteen: Of Mice and Men (The Sequel), ASM Gorillas Part IV

cp Main_Menu ; Depending on the menu (and register A tells us what the menu is),

; either quit the game or go to a different menu

jrz, Goto_Ai_Or_Human_Menu

cp Al_Or_Human_Menu

jr z, Goto_Al_Difficulty_Menu

cp Ai_Difficulty_Menu

jr z, Goto_Players_Menu

Second_Item_Selected:

pop af

pop af

cp Ai_Difficulty_Menu

jr z, Goto_Players_Menu

cp Al_Or_Human_Menu

jr z, Goto_Players_Menu




Lesson Thirteen: Of Mice and Men (The Sequel), ASM Gorillas Part IV

Third_Item_Selected:
pop af

pop af

cp Players_Menu

jrz, Goto_Al_Or_Human_Menu

cp Al_Or_Human_Menu

jr z, Goto_Main_Menu

cp Ai_Difficulty_Menu

jr z, Goto_Players_Menu

cp Main_Menu
jr z, Goto_Settings_Menu

ret

Fourth_ltem_Selected:

pop af

pop af

cp Ai_Difficulty_Menu

jr z, Goto_Players_Menu

cp Settings_Menu

jr z, Goto_Main_Menu

cp Main_Menu
jr z, Quit_Game_From_Main_Menu

ret




Lesson Thirteen: Of Mice and Men (The Sequel), ASM Gorillas Part IV

Fifth_Item_Selected:
pop af

pop af

cp Ai_Difficulty_Menu
jrz, Goto_Al_Or_Human_Menu

ret

Goto_Ai_Or_Human_Menu: ; We specify a new menu. Then RET will return us to
; Display_New_Menu. This is because this is the next value in the stack,
; telling the calculator where to return.
Id a, Al_Or_Human_Menu

ret

Goto_Al_Difficulty_Menu:
Id a, Al_Difficulty_Menu

ret

Goto_Players_Menu:
Id a, Players_Menu

ret

Goto_Main_Menu:

Id a, Main_Menu

ret
Goto_Settings_Menu:

Id a, Settings_Menu

ret




Lesson Thirteen: Of Mice and Men (The Sequel), ASM Gorillas Part IV

So hopefully, a lot of this is relatively easierunderstand.
However, we now need to tell the calculator whaldovhen the user
selects “QUIT.” To do this, I'm going to introdueerather interesting
technique.

Our stack now holds two important values. Thedbthe stack
holds the value telling the calculator where tamet—that is,
somewhere in Display _New_ Menu. (The second vallliethe
calculator where to go to return to the operatygjesm.) However, we
don’t want to go to Display New_ Menu. We want totghe game!
We want to go to the label Quit_Program.

Why don’t we just JP or JR to that label? Becdbsee are still
values in the stack, and we want the first onerebbeor else the
calculator will likely crash.

We could just pop this value and then jump to
Display New_Menu. However, I'm going to teach yamother way.
Remember how RET pops a value that tells the caticuivhere to go?
We’'re going to force the calculator to go to Quitodtam after a RET is
encountered.

The calculator has a register called SP. It ididre the top of the
stack is. Whenever we push a value onto the stackhen we pop a
value, SP is adjusted appropriately, since theksiemws and shrinks.
We can store a value into the stack by using regid.. So we will
store the location of Quit_Program into the tophaf stack. Then when
RET is encountered, this value will be popped, twedcalculator will
thus go to Quit_Program!



Lesson Thirteen: Of Mice and Men (The Sequel), ASM Gorillas Part IV

Quit_Game_From_Main_Menu:

pop hi
Id hl, Quit_Program
push hl

ret

At this point, our lesson is done. Feel freehieak the next few
pages, to make sure you have all of ASMGorillashMeEm typed
correctly.



Lesson Thirteen: Of Mice and Men (The Sequel), ASM Gorillas Part IV

;hl is the location of the nmenu text
;b is the nunber of itens the nmenu has
;d contains the X position, the colum to display the text at.
;e contains the Y position, the rowto display the text at.
Menu_Bef or e_Gane:

push de

B CALL _d rLCDFul |

pop de

cp Main_Menu

jr z, Display_Min_Menu

cp Settings_Menu

jr z, Display_Settings_Menu

cp Al _ O Human_Menu

jr z, Display_Al_O _Human_Menu
cp Players_Menu

jr z, Display_Players_Menu

cp Al _Difficulty_Menu

jr z, Display Al _D fficulty_Menu

Di spl ay_Mai n_Menu:

I d hl, Min_Menu_Text

Id b, Main_Menu Itens

Id a, Main_Menu_End OF Menu
Id (End_ O Menu), a

jr Continue_To D splay Menu
Di splay_Settings_Menu:

Id hl, Settings_Menu_Text
Id b, Settings Menu_ ltens
Id a, Settings Menu End OF _Menu
Id (End O Menu), a

jr Continue_To D splay Menu
D splay_ Al _O_Human_Menu:

d hl, Al _O_Human_Menu_Text

d b, Al_O_Human_Menu_ltens

d a, Al_O_Human_Menu_End_OF _Menu
d (End O _Menu), a



Lesson Thirteen: Of Mice and Men (The Sequel), ASM Gorillas Part IV

jr Continue_To_Di splay Menu
Di spl ay_ Pl ayers_Menu:
d hl, Players_Menu_Text
d b, Players Menu_ltens
d

a, Players Menu_End OF _Menu
(End_O _Menu), a

I
I
I
I
jr Continue_To D splay Menu
Display Al _Difficulty_ Menu:

ld hl, Al _Difficulty_ Menu_Text
ld b, Al _Dfficulty Menu_Itens

ld a, Al _ Dfficulty Menu_End_O _Menu
Id (End_ O Menu), a

jr Continue_To D splay Menu

Conti nue_To_Di spl ay_Menu:

Id a, ¢
push af

call D splay_Text_Menu

; Di splay the cursor while saving which nenu we are
di spl ayi ng

Id a, 14
Id (Menu_.Y), a
Move_ Cur sor _Loop:
call Al ow User_To_Mve_Cursor

jr Move Cursor_Loop

D spl ay_Text _Menu:

enRow) , a

00O
QO
S -
o> o



Lesson Thirteen: Of Mice and Men (The Sequel), ASM Gorillas Part IV

Id (penCol), a

Idc, b : Save the nunber of nmenu itens
;left to display

ld b, (hl)

i nc hl

B_CALL _VPut SN

Id a, e :Move the text line of text to the next
C T OW

add a, 7

ld e, a

Id b, ¢

dj nz D splay_Text _Menu

ret

Al |l ow User To_ Move Cursor:

Id a, 2

Id (penCol), a
Id a, (MenulY)
I

d (penRow), a

Id a, $05 ; The code for the right arrow key
B CALL _VPut Map

B CALL _get Key

cp kDown

jr z, Move Menu_Cursor_Down
cp kUp

jr z, Move _Menu_Cursor_Up
cp kEnter

jr z, Menu_Select _Item

jr Allow User To Mve_ Cursor

Move Menu_Cur sor _Down:

, $06 ; The code for the right arrow key
LL _VPut Map

Qp

B

Id a, (End_O _Menu)



Lesson Thirteen: Of Mice and Men (The Sequel), ASM Gorillas Part IV

Id e, a

Id a, (MenulY)

cp e

jr nc, Reset Myve Menu_Cursor_Down
add a, 7

Id (Menu.Y), a

ret

Reset _Move_Menu_Cur sor _Down:

Id a, 14
Id (Menu_.Y), a
ret

Move_Menu_Cursor _Up

Id a, 2

Id (penCol), a
Id a, (MenulY)
I

d (penRow), a

Id a, $06 ; The code for the right arrow key
B_CALL _VPut Map

Id a, (MenulY)
sub 7

cp 7
jr z, Reset Mwve Menu_Cursor_Up

Id (Menu.Y), a
ret

Reset _Move Menu_Cursor _Up

Id a, (End_O _Menu)
Id (Menu.Y), a
ret

Menu_Sel ect _|tem
Id a, (MenulY)

cp 14
jr z, First_Item Sel ected
cp 21
jr z, Second Item Sel ected
cp 28
jr z, Third_Item Sel ected
cp 35
jr z, Fourth_Item Sel ected
cp 42



Lesson Thirteen: Of Mice and Men (The Sequel), ASM Gorillas Part IV

jr z, Fifth_lItem Selected
First _Item Sel ect ed:

pop af
pop af

cp Main_Menu
jr z, Goto_ A _Or_Human_Menu

cp Al _ O Human_Menu
z

] , Goto_Al _Difficulty_Menu

cp Al _Difficulty_Menu
jr z, Goto Players_Menu

J
ret
Second_Item Sel ect ed:

pop af
pop af

cp Al _Difficulty_Menu
jr z, Goto_Players_Menu

cp Al _ O Human_Menu
jr z, Goto Players_Menu

J
ret
Third_Item Sel ect ed:

pop af
pop af

cp Players_Menu
jr z, Goto Al_Or Human_Menu

cp Al _ O Human_Menu
jr z, Goto_Main_Menu

cp Al _Difficulty_Menu
jr z, Goto_Players_Menu

cp Main_Menu
jr z, Goto_Settings_Menu

ret
Fourth_Item Sel ect ed:

pop af
pop af



Lesson Thirteen: Of Mice and Men (The Sequel), ASM Gorillas Part IV

c

Al _Difficulty Menu

z, CGoto_Players _Menu
Settings_Menu

z, Goto_Min_Menu

Mai n_Menu

z, Quit_Gane_From Mai n_Menu

— 00— 00—
=T TT T

ret

Fifth_Item Sel ect ed:
pop af
pop af

cp Al _Difficulty_Menu
jr z, Goto_ Al _O_Human_Menu

ret

Goto_ Al _ O _Human_Menu:

Id a, AIl_O_ Human_Menu
ret

Goto_ Al _Difficulty_Menu:

Id a, Al Dfficulty Menu
ret

Got o_Pl ayers_Menu:

Id a, Players_ Menu
ret

Got 0_Mai n_Menu:

Id a, Main_Menu
ret

Goto_Settings_Menu:

Id a, Settings Menu
ret

Qui t _Game_From Mai n_Menu:

pop hl

Id hl, Quit_Program
push hl

ret



