
TI-83+ Z80 ASM
for the Absolute

Beginner

LESSON FOUR:

• Your First ASM Programs

 Lesson Four: Your First ASM Programs 2

YOUR FIRST ASM PROGRAMS
 Now that you have a basic understanding on the calculator
processor—understanding that is necessary for ASM programs—it's
time to learn how to code! This lesson will cover several ASM
programs, as well as provide exercises for you to practice with.

However, we're not going to code a “Hello World” program. To
proceed in an orderly fashion, I feel that there are other things that
should be covered first.

 So the question now is, what do you need to write an ASM
program? First, you need a text editor. I'm not going to list a whole
bunch of different ones, so just use the one you're comfortable with.
Then, you need a copy of ti83plus.inc. You can get it here:
http://education.ti.com/educationportal/downloadcenter/SoftwareDetail.do?website=US&tabId=1&appId
=177

Finally, you need an Assembler. This is what translates your code into
the language that your calculator can understand. I can't list very many,
because I haven't been programming in ASM for a long time, and I've
had issues with many assemblers. Some that I've seen people use are
Zilog Developer Studio 3.16 and TASM. The assembler I use, and
HIGHLY recommend, is Spencer's Assembler, also called spasm. You
can get it here:
http://www.unitedti.org/forum/index.php?showtopic=8068&view=findpost&p=125195. Spencer's
Assembler is the one I will be teaching you how to use, as it's very
efficient and runs on Mac, Linux and Windows.

You will also need an emulator. An emulator imitates something on a
computer, so a Ti-83+ emulator will allow you to run a Ti-83+ on your
computer. This way, you can test your programs without putting them

 Lesson Four: Your First ASM Programs 3

on your calculator. You can damage your calculator if you run an ASM
program that has errors on it, so make sure you always test your
programs on an emulator before putting them on your calculator.

Which emulator should you use? WabbitEmu. Pretty much
EVERYBODY who programs in Ti-83+ ASM uses WabbitEmu. You
can get WabbitEmu here:
http://code.google.com/p/seekanddestroy/source/browse/#svn/trunk/Wab
bit Emu.

You need a ROM to be able to use WabbitEmu. You can download Ti-
83+ Flash Debugger, and go to the file ti83plus.clc in the Exe folder.
Change the filename to ti83plus.rom, and you have your ROM file!

Open your text editor, and type in the program on the next page, making
sure that you include the tabs. I will then tell you how to compile and
run it. Afterwards, I promise that I will explain the program to you one
line at a time.

This program will solve the program 1 + 5 and display the answer.

#include “ti83plus.inc”

.org 40339

.db t2ByteTok, tAsmCmp

 B_CALL _ClrLCDFull

 ld a, 1

; Solve the problem 1 + 5

 add a, 5

 ld h,0

 ld l, a

 B_CALL _DispHL

 B_CALL _getKey

B_CALL _ClrLCDFull

 ret

 Lesson Four: Your First ASM Programs 4

 Lesson Four: Your First ASM Programs 5

 Lesson Four: Your First ASM Programs 6

Now save this program as program1.asm, or whatever you want to call
it. Give it a name you will remember. Also make sure that this
program, spasm and ti83plus.inc are in the same folder.

 To compile the program in Windows, run command prompt and go
to the folder containing spasm. Type in “spasm” followed by a space
and the name of your text file. Then type in the name of your program.
For instance, “spasm program1.asm program.8xp”. Note that your
program name will be cut down to 8 characters if it is too long.

 Now, drag your newly created program onto wabbitemu.exe. If
wabbitemu asks for a ROM, select the TI83Plus.rom you download.
Afterwards, run your program using Asm().

If you typed everything correctly, you should see the answer to your
problem, 6. Two thumbs up! Now for the detailed explanation I
promised you.

#include “ti83plus.inc” – To program for the Ti-83+ in the ASM
language, most of the functions and data you need is in this file.
However, these functions are not standard to ASM programming. They
are only used when programming ASM for the Ti-83+! So #include
tells spasm to include the functions in this file. For example, ti83plus.inc
tells spasm exactly what to do with _getKey. But if you did not tell
spasm to include ti83plus.inc, spasm would not know what to do with
_getKey, and an error would occur.

.org 40339 – Remember what I mentioned in tutorial #3, about how
RAM has addresses so the calculator knows where to find everything?
On the Ti-83+, an ASM program must always, always run in RAM

 Lesson Four: Your First ASM Programs 7

starting at address 40339. So .org 40399 tells the calculator that this is
where it should place the program to run it.

.db t2ByteTok, tAsmCmp – This tells the calculator that the program is
an ASM program, not a Ti-Basic program. We’ll talk more about .db
later.

B_CALL _ClrLCDFull – Stored on the calculator is a function that
clears the screen. You cannot access this function using Ti-Basic. (Ti-
Basic does something else for the function ClrHome.) You can only
access this function using ASM. B_CALL will call this function and
clear the screen.

; Solve the problem 1 + 5 – This is a comment. You can put anything
you want in a comment. It could be information about the program, a
joke you want the reader to look at, or anything else you want to put in.

When you run spasm to translate your program, spasm will ignore any
comments you make. A comment must start with a semicolon.

ld a, 1 – As a quick review, the calculator’s processor can’t solve a
problem (such as 1 + 5) using regular RAM, so it needs to solve the
problem using its “working memory,” its registers. A is one such
register. “A” stands for accumulator, and this register is where most of
the calculator’s math is done. Ld a, 1 is the same as saying, in Ti-Basic,
“1 � A,” and so we let a = 1. But remember, A is not a variable. It is
a register, used by the calculator to perform math.

add a, 5 – This function adds 5 to whatever is inside of register A. In
this case, since A = 1, “add a, 5” will cause A to equal 6.

ld h, 0 – H is another register. Later we’ll talk about what H is mainly
used for (because each of the calculator’s registers has a special
purpose), but for right now we let it equal 0.

 Lesson Four: Your First ASM Programs 8

ld l, a – L is yet another register. We let L = A. So now L = 6, since A
= 1 + 5 = 6.

By the way, H and L can be used as a pair. Since H = 0 and L = 6, HL =
06, meaning HL = 6. For the time being, don’t take this and run with it:
if H = 1 and L = 7, HL DOES NOT equal 17.

B_CALL _DispHL – Stored on the calculator is a function called
DispHL, which will display whatever is inside of HL. Once again, only
ASM programs can access this. Since HL = 6 after our addition
problem, B_CALL _DispHL will display “6” on the screen.

B_CALL _getKey – Waits for a keypress.

ret – The ASM program will quit upon reaching the word ret. All ASM
programs need to end with “ret”, or else the calculator will crash.

Here’s another program. This time, you should see the answer 11.

#include “ti83plus.inc”

.org 40339

.db t2ByteTok, tAsmCmp

B_CALL _ClrLCDFull

 ld a, 7

; Solve the problem 7 + 4

 add a, 4

 ld h,0

 ld l, a

 B_CALL _DispHL

 B_CALL _getKey

B_CALL _ClrLCDFull

 ret

 Lesson Four: Your First ASM Programs 9

Exercise:

Edit your program three times so that you can solve 55 + 67, 102 + 58,
and 200 + 15.

Let’s go back to the program that solved 7 + 4. Change it to the
following:

#include “ti83plus.inc”

.org 40339

.db t2ByteTok, tAsmCmp

NumberSeven .equ 7

NumberFour .equ 4

B_CALL _ClrLCDFull

 ld a, NumberSeven

; Solve the problem 7 + 4

 add a, NumberFour

 ld h,0

 ld l, a

 B_CALL _DispHL

 B_CALL _getKey

B_CALL _ClrLCDFull

 ret

 Lesson Four: Your First ASM Programs 10

 What happens now? You still get the answer 11. When spasm
translates the program, it replaces “NumberSeven” with the number 7,
and it replaces “NumberFour” with the number 4.

 In the case of this program, NumberSeven and NumberFour are
called constants. A constant is a number that never changes. Since
NumberSeven is always equal to seven, you can use it instead of the
number 7 anywhere in this program. Try it:

You should get the answer 14.

#include “ti83plus.inc”

.org 40339

.db t2ByteTok, tAsmCmp

NumberSeven .equ 7

NumberFour .equ 4

B_CALL _ClrLCDFull

 ld a, NumberSeven

; Solve the problem 7 + 7

 add a, NumberSeven

 ld h,0

 ld l, a

 B_CALL _DispHL

 B_CALL _getKey

B_CALL _ClrLCDFull

 ret

 Lesson Four: Your First ASM Programs 11

This wraps up our programming for today. Here are a couple of
things for you to look at and think about.

1. Be careful when working with register A. A is one byte, so it
cannot be bigger than 255. In fact, try adding 200 + 100. Do you
get 300? No, you get 44. Here’s what happens: 200 + 55 is 255.
So you have 45 left to add to A. If you add one more to A, A
cannot get any bigger, so it resets to zero. Then you have 44 left to
add to A, so A = 44.

2. To subtract a number from A rather than add a number to A, use
the instruction sub. For instance,

ld a, 5

sub 2

This will solve the problem 5 – 2, returning the answer 3.

However, note that A cannot be less than zero. Just like A resets
itself to 0 when you try to make it bigger than 255, A resets itself
to 255 when you try to make it less than zero.

 Next lesson, we’ll look at variables and labels.

