T1-83+ Z80 ASM
for the Absolute
Beginner

APPENDI X D:

e Interrupts

ppendix D: Interrupts

INTERRUPTS

Take a moment to pretend that it's your turn xodiinner for your
family of nine people. You need to start dinneBahnd have it ready
by 5. So you decide to fix a tasty gourmet dirthat needs to be stirred
every ten minutes.

Now, are you going to just stare at the food,isafter 10 minutes,
stare at it again, stir it, stare at it? Probaiady, You may grab a book,
type some emails, play some Xbox, or do somethisgwhile the 10
minute timer on your stove is running.

When the timer rings, are you going to finish winati were doing
before stirring the dinner? Even if you had onarfmefore you finished
playing an Xbox game? Chances are the food wourld to a crisp if
you waited to stir it. Nope, you wouldterrupt whatever you were
doing to stir the food, and then you would retuwryour relaxing until
ten more minutes passed.

Sometimes, when you design a calculator program have
something that needs to happen on a consistemtytinasis, no matter
where in the program you are. For example, in Hiphkayer game I'm
writing, | want to constantly check the link port the Ti-83+ to see if
there’s data to receive from the other player, landnt this to happen
every 1/118 of a second so that the multiplayer game stagymnic. So
every 1/118 of a second, my program will interrupt itself torthe
code that will check the link port. Afterwardsethrogram will resume
running from where it was interrupted.

Pretty cool that you can do this, huh? This sotly what CALLS
do: When you use CALL label, the program goesi&label, and after

ppendix D: Interrupts

reaching RET, the program returns to the line dfterCALL statement,
so that the rest of the program can run normdtgwever, CALLs do
not happen on a timely and consistent basis. Wliyat? Because the
CALL will run ONLY when the calculator reaches timnstruction in the
program code. To state the obvious, the calculatarnning your
program instruction by instruction, and it won'nirCALL if there is no
CALL at that point in your code.

What we want is something that will be called at any pointhe t
program whenever a certain amount of time has pgas¥BRis lesson is
meant to teach you how to do that. You will nepglackupscreen to
use interrupts in your program or your applicatianleast for this
lesson. For the most part, we will have an infgrroutine that runs
approximately every 1/118 of a second, but I'll teach you how to
change the speed later on in this lesson.

The calculator has 3 interrupt modes: Mode 0, Mbdad Mode
2. We want to use interrupt mode 2, since ModetBe interrupt mode
that lets us run our own interrupt routine that wih every 1/118 of a
second. (Mode 0 is not used by the Ti-83+, andavet use Mode 1
since the calculator uses it.) Be careful: if yse interrupt mode 2, you
cannot use _getKey and _getCSC.

To start off, you'll want to code your interruptutne. (Fear not,
there is an example program!) You should keep yaterrupt small if
you can. Begin it with a label, say “Begin_IntgatuRoutine,” and end
it with a label, say “End_Interrupt_Routine.” Thgou'll want to copy
it to $9A9A, an address that points to an aregjpbackupscreen.

mppendix D: Interrupts

LD HL, Begin_Interrupt_Routine

LD DE, $9A9A

LD BC, End_Interrupt_Routine — Begin_Interrupt_Roe
; BC now equals how many bytes to copy

LDIR

But how does the calculator know where your intetiroutine is?
Well, that's a little bit tricky. Every 1/11Bof a second, the calculator
will check one of 256 different locations (of yazhroice) in RAM for a
program location to jump to. When the program dititat two-byte
value, it will interrupt itself and jump to thatdation that it found. So if
we want to run Begin_Interrupt_Routine every 1/1d8a second, we
need to store $9A9A at these 256 locations theutatar checks. That
way, the calculator will always read $9A9A as theerrupt routine, and
it will always jump to $9A9A about every 1/1'18f a second.

We need to decide which 256 locations in RAM watthe
calculator to check. A location is always a twdebgumber, as you
already know. We can give the calculator the fagde of this two-byte
location by using thé Register, and this value will never change unless
we want it to. The second byte of our two-byte bems always chosen
at random...since this second byte can be from 0(@65- FF in
hexadecimal), and since register | will never cleriigat’'s 256
locations!

ppendix D: Interrupts

We will let Register | be equal to $99. This echuse the
numbers $9900 to $99FF (a total of 256 locatioig)@nt to
appbackupscreen. You can only access registeusing register A:
Either LD I, Aor LD A, I.

LD A, $99
LD I, A

Now that the calculator knows where to look faagas to jump to
every 1/118 of a second, we need to make sure that the cédecuwlail
always jump to $9A9A.

LD HL, $9900 ; The Beginning of the 256 locatidhat
; the calculator will search

LD B, 0 ; Believe it or not, if you use DIJNZ on=80,
; your code will loop 256 times. So we can
; store $9A9A to 256 locations!

LD DE, $9A9A ; The location of our interrupt code

Store_Interrupt_Code_Location:

Id (hl), D

inc hl

Id (hl), E

DJNZ Store_Interrupt_Code_Location

—Appendix D: Interrupts

As was aforementioned, the advantage to interaugtnes is that
they can occur anywhere in the program, every 1hf& second. But
what happens if you jump in the middle of a routisued your registers
have very important values that you can’t affordbse? If your
interrupt routine uses any of those registers,lgea those values that
the registers previously held.

You could solve this by pushing AF, BC, DE and #ilring the
interrupt routine, and then popping them before gxitiyour interrupt
routine. Then your registers will hold whatevelues they had before
your code was interrupted. But there is a bettey t® save your
valuable register data besides PUSH and POP. AEX AF’ will save
the value of AF temporarily, and EXX will save tha@ues of BC, DE
and HL. You must use these at the beginning of yderrupt routine,
and again at the end of your interrupt routine.

There are some more simple instructions you neéddw about,
but | will give them to you in the form of the expla program on the
next few pages. This program will draw spriteglosm screen, but it will
calculate approximately how many seconds have gasedhat when
you exit, you can see approximately how much tiime §pend goofing
off on your calculator. Exit the program by press?™, then divide the
result by 118 to seapproximately how many seconds have passed. (If
you are using a Ti-83+ Silver Edition or a Ti-84tvide by 107.79 to
get an approximation.)

ppendix D: Interrupts

#include "ti83plus.inc"
.org $9D93
.db t2ByteTok, tAsmCmp
;Even though appbackupscreen is needed for our interrupt code and data, it is safe to use at least the 700th byte of appbackupscreen.
Number_Of_Seconds .equ appbackupscreen + 700
End_Program .equ appbackupscreen + 702 ; This value of the variable will be equal to 1 if it’s time to end our program.
Image_Position .equ appbackupscreen + 703
B_CALL _CIrLCDFull
Ida, 0
Id (End_Program), a ; We don’t want to end the program, so we let this value equal to 0.
Idhl, 0

Id (Number_Of_Seconds), hl ; No time has passed yet

di ; DI means Disable Interrupts. We do not want interrupt routines running while we are preparing the interrupt code.
Id hl, Interrupt_Routine
Id de, S9A9A
Id bc, End_Of_Interrupt_Routine - Interrupt_Routine
Idir
Id a, $99
Idi, a
Id hl, $9900
Idb,0
Id de, S9A9A
Store_Interrupt_Code_Location:
Id (hl), d
inc hl
Id (hl), e
djnz Store_Interrupt_Code_Location

im2 ; We want interrupt mode 2.

Id a, %00000110 ; Tell the calculator we want an interrupt to happen every 1/118th of a second.

; You'll learn how to do this at the end of this lesson.

out (4), a

; Enable Interrupts.

HAppendix D: Interrupts

Draw_Picture_On_Screen:

;To draw our picture, we are going to use the sprite routine from appendix B.

; WILL HAVE PICTURE ROUTINE IN FULL RELEASE

Interrupt_Routine:
di ; We don’t want the interrupt routine to interrupt itself.

; Saves the values of our registers

Id hl, (Number_Of_Seconds)
inc hl

Id (Number_Of_Seconds), hl

;Detects for a keypress without using _getKey, since interrupt mode 1 cannot be used. If you did not read appendix C, don't try to understand this code.
Id a, SFF
out (1), a
;See if the second key is pressed
Id a, SBF
out (1), a
nop
nop
ina, (1)
BITS5, a

jrz, End_ASM_Program

ex af, af'

;The following code resets the interrupt timer. I've personally found that it is a requirement at the end of an interrupt routine.

a,%00001000
(3)a
a,%00001010
(3)a
;Enable Interrupts Again

;Exit our interrupt routine and return to the place where the program was interrupted

mppendix D: Interrupts

End_ASM_Program:
im1 ;Itis VERY important that you turn interrupt mode 1 back on before your program ends, because the calculator needs mode 1.
B_CALL _CIrLCDFull
Id hl, (Number_Of_Seconds)
Ida, 1
Id (End_Program), a
B_CALL _DispHL
B_CALL _getKey
ret

End_Of_Interrupt_Routine:

Smiley_Face:

.db %01010101,%01010101,%01010101,%01010101,%01010101,%01010101
.db %10101010,%10101010,%10101010,%10101010,%10101010,%10101010
.db %01010101,%01010101,%01010101,%01010101,%01010101,%01010101
.db %10101010,%10101010,%10101010,%10101010,%10101010,%10101010
.db %01010101,%01010101,%01010101,%01010101,%01010101,%01010101
.db %10101010,%10101010,%10101010,%10101010,%10101010,%10101010
.db %01010101,%01010101,%01010101,%01010101,%01010101,%01010101
.db %10101010,%10101010,%10101010,%10101010,%10101010,%10101010
.db %01010101,%01010101,%01010000,%00000101,%01010101,%01010101
.db %10101010,%10101010,%10000000,%00000010,%10101010,%10101010
.db %01010101,%01010101,%00000000,%00000001,%01010101,%01010101
.db %10101010,%10101010,%00001100,%00110000,%10101010,%10101010
.db %01010101,%01010101,%00011110,%01111000,%01010101,%01010101
.db %10101010,%10101010,%00011110,%01111000,%00101010,%10101010
.db %01010101,%01010100,%00001100,%00110000,%01010101,%01010101
.db %10101010,%10101010,%00000000,%00000000,%00101010,%10101010
.db %01010101,%01010100,%00000000,%00000000,%01010101,%01010101
.db %10101010,%10101010,%00000000,%00000000,%00101010,%10101010
.db %01010101,%01010100,%00100000,%00000010,%01010101,%01010101
.db %10101010,%10101010,%00010000,%00001100,%00101010,%10101010
.db %01010101,%01010100,%00001110,%01110000,%01010101,%01010101
.db %10101010,%10101010,%00000001,%10000000,%10101010,%10101010
.db %01010101,%01010101,%00000000,%00000000,%01010101,%01010101
.db %10101010,%10101010,%10000000,%00000000,%10101010,%10101010
.db %01010101,%01010101,%01000000,%00000001,%01010101,%01010101
.db %10101010,%10101010,%10100000,%00001010,%10101010,%10101010
.db %01010101,%01010101,%01010101,%01010101,%01010101,%01010101
.db %10101010,%10101010,%10101010,%10101010,%10101010,%10101010
.db %01010101,%01010101,%01010101,%01010101,%01010101,%01010101
.db %10101010,%10101010,%10101010,%10101010,%10101010,%10101010
.db %01010101,%01010101,%01010101,%01010101,%01010101,%01010101
.db %10101010,%10101010,%10101010,%10101010,%10101010,%10101010

ilbNAppendix D: Interrupts

Remember, try to keep your interrupt routines spsallthat you
don’t run out of space in appbackupscreen. IfMST have a large
interrupt routine, place some code in another aed,CALL it from
your interrupt routine.

Now, did | hear someone ask “How do | set an inj@rspeed?”

CODE SPEED

ld a, %00000110 Slowest. This is the default, and
second on a Ti-83+

Ild a, %00000100 Medium-Slow. About 170 times a

out (4), a second on a Ti-83+

Ild a, %00000010 Fast—About 248 times a second

out (4), a on a Ti-83+

ld a, %00000000 Fastest—About 560 times a secagnd

out (4), a on a Ti-83+

