Author Topic: Funny sequence  (Read 5412 times)

0 Members and 1 Guest are viewing this topic.

Offline Munchor

  • LV13 Extreme Addict (Next: 9001)
  • *************
  • Posts: 6199
  • Rating: +295/-121
  • Code Recycler
    • View Profile
Funny sequence
« on: April 08, 2011, 12:21:06 pm »
Even if most of you have seen this sequence before, here it is, good luck deciphring it and getting the next element (it's infinite)

1
11
21
1211
111221
312211
12112221
1112213211

:D

Offline turiqwalrus

  • LV8 Addict (Next: 1000)
  • ********
  • Posts: 840
  • Rating: +51/-2
  • Wheeeeeee~!
    • View Profile
Re: Funny sequence
« Reply #1 on: April 08, 2011, 03:15:47 pm »
Spoiler For Spoiler:
one
one '1'
2 1's
1 '2', 1 '1'
...
« Last Edit: April 08, 2011, 03:20:56 pm by turiqwalrus »

Offline Munchor

  • LV13 Extreme Addict (Next: 9001)
  • *************
  • Posts: 6199
  • Rating: +295/-121
  • Code Recycler
    • View Profile
Re: Funny sequence
« Reply #2 on: April 08, 2011, 03:19:41 pm »
Spoil it now. So others can't see.
« Last Edit: April 08, 2011, 03:19:54 pm by Scout »

Offline Binder News

  • LV8 Addict (Next: 1000)
  • ********
  • Posts: 785
  • Rating: +46/-3
  • Zombie of Tomorrow
    • View Profile
Re: Funny sequence
« Reply #3 on: April 08, 2011, 03:23:54 pm »
Oh yeah, I think I've seen this before. does it have a name?
Spoiler For userbars:







Hacker-in-training!   Z80 Assembly Programmer     Axe Programmer
C++ H4X0R             Java Coder                           I <3 Python!

Perdidisti ludum     Cerebrum non habes

"We are humans first, no matter what."
"Fame is a vapor, popularity an accident, and riches take wings. Only one thing endures, and that is character."
Spoiler For Test Results:





Offline phenomist

  • LV4 Regular (Next: 200)
  • ****
  • Posts: 132
  • Rating: +46/-3
    • View Profile
Re: Funny sequence
« Reply #4 on: April 08, 2011, 06:57:35 pm »
Some exploratory questions to ask (sorted by difficulty?):

1) Prove that every digit in numbers of this series are either "1", "2", or "3".
2) Prove that for every term, the last digit is always 1.
3) Prove that you cannot have 3 3's in a row.
4) Does the length of the terms ever decrease? Find the first instance if it does.
5) Asymptotically speaking, what is the length of each term of the sequence?
6) As the terms grow large, what will the distributions for each digit be?

The first three are definitely doable.
« Last Edit: April 08, 2011, 06:57:52 pm by phenomist »
Level Designer for Graviter

[Disclaimer: I can't program for my life.]

Offline PeonHero

  • LV3 Member (Next: 100)
  • ***
  • Posts: 70
  • Rating: +13/-5
  • Coder of Tomorrow, Coding Today.
    • View Profile
Re: Funny sequence
« Reply #5 on: April 25, 2011, 09:32:15 pm »
Let me try this:

1) Prove that every digit in numbers of this series are either "1", "2", or "3".

 It's impossible that there will be anything above a 3. Why? The numbers are always grouped together in a way that makes it only possibly to get up to 3 of a number.

2) Prove that for every term, the last digit is always 1.

It will always be 1 because the initial number was 1. If the initial number was 2, it will always be two, same with any other number. The first two rows are the most important, since N is defined in the first row, the second row will always be 1N. And after that, you can't get rid of it.

3) Prove that you cannot have 3 3's in a row.

Because the maximum you can have is 2 3's in a row. 33111 will be 2331, 22233111 will be 322331, you need 3 3's to make 333 possible in the first place, but since you will never encounter 3 3's, you won't encounter 3 3's.

4) Does the length of the terms ever decrease? Find the first instance if it does.

No. I've been doing this for 15 minutes on a calculator, it's not possible.

5) Asymptotically speaking, what is the length of each term of the sequence?

I don't know what this question is asking for. It looks like an exponential increase in number of terms in the sequence per row.

6) As the terms grow large, what will the distributions for each digit be?

The terms won't really "Grow Large," since it's all just 1s,2s and 3s. The last digit will always be a 1. And the first digit alternates between 1 and 3 in the later stages. The digits in the center are mostly made up of 1's, with a few 2's and 3's in between. There are always more 1's, more 2's, more 3's, in the next row than the previous one. Etc.
« Last Edit: April 25, 2011, 09:35:32 pm by PeonHero »
There are a lot of<a href="http://justmegawatt.com/images/youdidntknow"> Things you didn't know </a>about until you clicked that link.