Author Topic: [Ndless] Ndless meets Bezier !  (Read 5349 times)

0 Members and 1 Guest are viewing this topic.

Offline Matrefeytontias

  • Axe roxxor (kinda)
  • LV10 31337 u53r (Next: 2000)
  • **********
  • Posts: 1982
  • Rating: +310/-12
  • Axe roxxor
    • View Profile
    • RMV Pixel Engineers
[Ndless] Ndless meets Bezier !
« on: November 22, 2012, 01:01:44 pm »
Hey guys !

I don't exactly know why, but I wanted to do a program working with Bezier curves somehow :P

I first tried with my 83+ and Axe, but integer numbers and parametric functions aren't good together. So I tried with Ndless :

Spoiler For Over-über-monstruously huge screenshot:


The curve is drawn depending on 4 control points, which you can move by selecting them with [ + ] or [ - ] (they are visible as 3*3 squares when they are selected) and then use the arrows. Exit with [ESC].

I wonder if I can do a game of that ...
« Last Edit: November 22, 2012, 01:05:22 pm by Matrefeytontias »

Offline Eiyeron

  • Urist McEiyolobster
  • LV10 31337 u53r (Next: 2000)
  • **********
  • Posts: 1430
  • Rating: +130/-10
  • (-_(//));
    • View Profile
    • Rétro-Actif : Rétro/Prog/Blog
Re: [Ndless] Ndless meets Bezier !
« Reply #1 on: November 22, 2012, 01:06:20 pm »
Yeah, now Could you make Adboe Illustrator :D?

Offline aeTIos

  • Nonbinary computing specialist
  • LV12 Extreme Poster (Next: 5000)
  • ************
  • Posts: 3915
  • Rating: +184/-32
    • View Profile
    • wank.party
Re: [Ndless] Ndless meets Bezier !
« Reply #2 on: November 22, 2012, 01:09:06 pm »
You have some nice projects lately. Mind sharing the idea you used?
I'm not a nerd but I pretend:

Offline Matrefeytontias

  • Axe roxxor (kinda)
  • LV10 31337 u53r (Next: 2000)
  • **********
  • Posts: 1982
  • Rating: +310/-12
  • Axe roxxor
    • View Profile
    • RMV Pixel Engineers
Re: [Ndless] Ndless meets Bezier !
« Reply #3 on: November 22, 2012, 01:23:17 pm »
Well, I read a book entitled "3D animation and computer generated images algorithms" ("Algorithmes pour la synthèse d'images et l'animation 3D", a French book in fact, by Rémy Malgouyres), and there's a chapter (several ?) about Bezier curves. I thought that I could use it in a game (but for now I haven't any idea about a game), so first I tried to plot a Bezier curve.

EDIT : the parametric function for a Bezier curve with 4 control points P1 to P4 is :

Q(t) = P1 * (1 - t)3 + P2 * 3t(1 - t)2 + P3 * 3t2(1 - t) + P4 * t3
« Last Edit: November 22, 2012, 01:26:42 pm by Matrefeytontias »