-->
Genetic Programming
-->
-->
Welcome,
Guest
. Please
login
or
register
.
Did you miss your
activation email
?
1 Hour
1 Day
1 Week
1 Month
Forever
Login with username, password and session length
-->
Home
About
Team
Rules
Stats
Status
Sitemap
Chat
Downloads
Forum
News
Our Projects
Major Community Projects
Recent Posts
Unread Posts
Replies
Tools
SourceCoder3
Other Things...
Omnimaga Radio
TI-83 Plus ASM File Unsquisher
Z80 Conversion Tools
IES TI File Editor
Free RAM areas
Comprehensive Getkeyr table
URL Shortener
Online Axe Tilemap Editor
Help
Contact Us
Change Request
Report Issue/Bug
Team
Articles
Members
View the memberlist
Search For Members
Buddies
Login
Register
Omnimaga
»
Forum
»
General Discussion
»
Technology and Development
»
Computer Programming
»
Genetic Programming
« previous
next »
Print
Pages: [
1
]
Go Down
Author
Topic: Genetic Programming (Read 8001 times)
0 Members and 1 Guest are viewing this topic.
ruler501
Meep
LV11
Super Veteran (Next: 3000)
Posts: 2475
Rating: +66/-9
Crazy Programmer
Genetic Programming
«
on:
February 25, 2011, 08:41:36 pm »
If you do not know about this there is a website here:
http://www.geneticprogramming.us/
I am trying to learn genetic programming/create a new library for it in python.
I thought this would be a good place to create a discussion on it and possible implementations and uses. Please post any thoughts you have on the subject
Logged
I currently don't do much, but I am a developer for a game you should totally try out called AssaultCube Reloaded download here
https://assaultcuber.codeplex.com/
-----BEGIN GEEK CODE BLOCK-----
Version: 3.1
GCM/CS/M/S d- s++: a---- C++ UL++ P+ L++ E---- W++ N o? K- w-- o? !M V?
PS+ PE+ Y+ PGP++ t 5? X R tv-- b+++ DI+ D+ G++ e- h! !r y
jnesselr
King Graphmastur
LV11
Super Veteran (Next: 3000)
Posts: 2270
Rating: +81/-20
TAO == epic
Re: Genetic Programming
«
Reply #1 on:
February 25, 2011, 10:44:22 pm »
I like how it essentially randomly chooses stuff, so you can give criteria even though you don't fully know where it's gonna go.
Logged
AngelFish
Is this my custom title?
Administrator
LV12
Extreme Poster (Next: 5000)
Posts: 3242
Rating: +270/-27
I'm a Fishbot
Re: Genetic Programming
«
Reply #2 on:
February 25, 2011, 10:45:22 pm »
The only problem is that it'll take a supercomputer a week to solve even a simple problem with genetic programming
Logged
∂²Ψ -(2m(V(x)-E)Ψ
--- = -------------
∂x² ℏ²Ψ
ruler501
Meep
LV11
Super Veteran (Next: 3000)
Posts: 2475
Rating: +66/-9
Crazy Programmer
Re: Genetic Programming
«
Reply #3 on:
February 25, 2011, 10:49:45 pm »
You can get it working well. I believe there are efficient algorithms that will make it in python take less than a minute on an average computer
Logged
I currently don't do much, but I am a developer for a game you should totally try out called AssaultCube Reloaded download here
https://assaultcuber.codeplex.com/
-----BEGIN GEEK CODE BLOCK-----
Version: 3.1
GCM/CS/M/S d- s++: a---- C++ UL++ P+ L++ E---- W++ N o? K- w-- o? !M V?
PS+ PE+ Y+ PGP++ t 5? X R tv-- b+++ DI+ D+ G++ e- h! !r y
AngelFish
Is this my custom title?
Administrator
LV12
Extreme Poster (Next: 5000)
Posts: 3242
Rating: +270/-27
I'm a Fishbot
Re: Genetic Programming
«
Reply #4 on:
February 25, 2011, 10:51:58 pm »
Depends on the problem. Genetic programming is a method that inherently relies on randomness, so it will only converge to a solution (if it can find one) with quite a bit of time. It's definitely more inefficient than most analytical algorithms.
Logged
∂²Ψ -(2m(V(x)-E)Ψ
--- = -------------
∂x² ℏ²Ψ
ruler501
Meep
LV11
Super Veteran (Next: 3000)
Posts: 2475
Rating: +66/-9
Crazy Programmer
Re: Genetic Programming
«
Reply #5 on:
February 25, 2011, 10:53:48 pm »
It can be applied for certain things to work better. I found some good uses for this.
Is there a better way to find polynomial approximations for functions?
Logged
I currently don't do much, but I am a developer for a game you should totally try out called AssaultCube Reloaded download here
https://assaultcuber.codeplex.com/
-----BEGIN GEEK CODE BLOCK-----
Version: 3.1
GCM/CS/M/S d- s++: a---- C++ UL++ P+ L++ E---- W++ N o? K- w-- o? !M V?
PS+ PE+ Y+ PGP++ t 5? X R tv-- b+++ DI+ D+ G++ e- h! !r y
AngelFish
Is this my custom title?
Administrator
LV12
Extreme Poster (Next: 5000)
Posts: 3242
Rating: +270/-27
I'm a Fishbot
Re: Genetic Programming
«
Reply #6 on:
February 25, 2011, 10:55:21 pm »
Gaussian Quadrature is an excellent method of approximating functions.
Logged
∂²Ψ -(2m(V(x)-E)Ψ
--- = -------------
∂x² ℏ²Ψ
Print
Pages: [
1
]
Go Up
« previous
next »
Omnimaga
»
Forum
»
General Discussion
»
Technology and Development
»
Computer Programming
»
Genetic Programming
\n\t\t\t\t\t\t\t\t\t
<' + '/div>\n\t\t\t\t\t\t\t\t\t
%body%<' + '/textarea>
\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t
Max characters: 20000; characters remaining:
...<' + '/span><' + '/span>
\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t\t<' + '/div>\n\t\t\t\t\t\t\t\t<' + '/div>', sTemplateSubjectEdit: '
', sTemplateBodyNormal: '%body%', sTemplateSubjectNormal: '
%subject%<' + '/a>', sTemplateTopSubject: 'Topic: %subject% (Read 8001 times)', sErrorBorderStyle: '1px solid red' }); aJumpTo[aJumpTo.length] = new JumpTo({ sContainerId: "display_jump_to", sJumpToTemplate: "
Jump to:<" + "/label> %dropdown_list%", iCurBoardId: 22, iCurBoardChildLevel: 1, sCurBoardName: "Computer Programming", sBoardChildLevelIndicator: "==", sBoardPrefix: "=> ", sCatSeparator: "-----------------------------", sCatPrefix: "", sGoButtonLabel: "go" }); aIconLists[aIconLists.length] = new IconList({ sBackReference: "aIconLists[" + aIconLists.length + "]", sIconIdPrefix: "msg_icon_", sScriptUrl: smf_scripturl, bShowModify: true, iBoardId: 22, iTopicId: 9382, sSessionId: "388f468aa7e12f9cdd2972df1f31f295", sSessionVar: "d61dbda4c", sLabelIconList: "Message Icon", sBoxBackground: "transparent", sBoxBackgroundHover: "#ffffff", iBoxBorderWidthHover: 1, sBoxBorderColorHover: "#adadad" , sContainerBackground: "#ffffff", sContainerBorder: "1px solid #adadad", sItemBorder: "1px solid #ffffff", sItemBorderHover: "1px dotted gray", sItemBackground: "transparent", sItemBackgroundHover: "#e0e0f0" }); } function tick2() { if (typeof(document.forms.quickModForm) != "undefined") { calcCharLeft2(); setTimeout("tick2()", 1000); } else setTimeout("tick2()", 800); } function message_onkeyup() { if (typeof(document.forms.quickModForm) != "undefined" && typeof(document.forms.quickModForm.message) != "undefined") { document.forms.quickModForm.message.onkeyup = function onkeyup(event) { storeCaret(this); calcCharLeft2(); }; } else setTimeout("message_onkeyup()", 800); } message_onkeyup(); function calcCharLeft2() { var maxLength = 20000; var oldEditor = "", currentEditor = document.forms.quickModForm.message.value; if (!document.getElementById("editorLeft2")) return; if (oldEditor != currentEditor) { oldEditor = currentEditor; if (currentEditor.replace(/\r/, "").length > maxLength) document.forms.quickModForm.message.value = currentEditor.replace(/\r/, "").substring(0, maxLength); currentEditor = document.forms.quickModForm.message.value.replace(/\r/, ""); } setInnerHTML(document.getElementById("editorLeft2"), maxLength - currentEditor.length); } // ]]>-->