
Game development with wxPython

Index
1. Introduction
2. Why wxPython?
3. The Graphics Device Widget
4. Timers and games
5. “Falling Blocks” - An example
6. Conclusion
7. Contact

Introduction
First of all, if you are reading this, I assume you have prior knowledge of Python and
wxPython. Another assumption is that you are using Python 2.6.x or Python 2.7.x and
wxPython 2.8.x. Neither prior nor posterior versions of wxPython are recommended for now.
Notice, though, that this was written in 2011 and in case wxPython 2.9 is already stable, using
it might cause no problems.

Since Python and wxPython are both cross-platform, this is, they work in more than one
operating systems, the guide is aimed for any operating systems.

I once tried pyGame and I was not very comfortable with it. I had been using wxPython for
Graphical User Interfaces for a long time and I wanted to be able to develop games with it.
After some research, I discovered the Graphics Device Widget, and in order to make my first
game I had to search for information on several websites. I decided to make a tutorial to help
beginners get comfortable with wxPython in order to develop games.

I must also note that many Python programmers will recommend pyGame because it was made
especially for games. I don't disagree, but I think you should try both and then decide which
one to use.

Regarding coding styles, I will always be using PEP-8, here are some of the key guidelines:

• Number of columns per line should be higher than 80;
• 4 spaces for indentation (never use TABs);
• All classes and functions should have a docstring below explaining them;
• Variables and Functions names are of type “my_variable” and classes are of type

“MyClass”

There are other guidelines that you can find on Python's website:
http://www.python.org/dev/peps/pep-0008/

http://www.python.org/dev/peps/pep-0008/

Why wxPython?
Most of the times, when one wants to develop a game using Python, he chooses to use
pyGame. It is the most used library for game development in Python because it was made from
the start to be used in games and that is only purpose.

wxPython has as main purpose providing programmers a simple but powerful way of
developing Graphical User Interfaces (from now on GUIs). The vast majority of games are
made in GUIs because terminals don't have graphical capabilities.

However, wxPython has support for many widgets, one of them, the Graphics Device
(explained more detailedly later) allows the programmer to simply generate colored 2D
Graphics. We will be using this in order to make games.

The Graphics Device Widget
wxPython has many built-in widgets such as buttons, text controls, menus, and so on, but in
order to develop games that use graphics, we will focus on the Graphics Device Widget.

The Graphics Device allows us to develop simple 2D graphics and we can use it for
animations, simulations or games. The Graphics Device has several components, we will be
using wxPaintDC:

http://www.wxpython.org/docs/api/wx.PaintDC-class.html

Creating a wxPaintDC widget is very simple, here's how it's done (self is a wxPanel here):

self.dc = wx.PaintDC(self) #Creates the wxPaintDC
self.dc.Clear() #Clears (to white) the wxPaintDC

Now, as I already said, self is a wxPanel here, so here is a class that inherits wxPanel, adds a
wxPaintDC Component to it and draws a line.

class Panel(wx.Panel):
 """Class with the main panel and its functions"""
 def __init__(self, parent):
 """Defines bindings and sets the panel up"""
 super(Panel, self).__init__(parent) #super the panel
 self.Bind(wx.EVT_PAINT, self.OnPaint)

 def OnPaint(self, event):
 """Is called with EVT_PAINT, draws a line"""
 self.dc = wx.PaintDC(self) #Creates the wxPaintDC
 self.dc.Clear() #Clears (to white) the wxPaintDC
 self.dc.DrawLine(5, 5, 100, 5) #Draws a line from (5,5) to (100,5)

Now, this code by itself doesn't do anything, we need to put that panel in a frame and display
the frame. But first I'll explain this to you.

We created a class that inherits wx.Panel, and on the __init__ we set it up by supering it to it's
parent (which will be a wxFrame). Then we bind the event wx.EVT_PAINT , which is called
when the frame is opened to the function OnPaint.

So whatever is inside OnPaint will be done after the frame is displayed, meaning the line we
drew on it will immediately appear on the screen.

self.dc.DrawLine(x1, y1, x2, y2)

wxPaintDC.DrawLine() is a function that draws a line from the coordinates (x1, y1) to the
coordinates (x2, y2).

http://www.wxpython.org/docs/api/wx.PaintDC-class.html

Everything inside the wxPaintDC is done with coordinates:

In this quick sketch I made it's easy to
understand how coordinates work on
wxPaintDC.

Now in the following sample I'll add the panel to
a frame (the code is in the file DrawLine.py in
code samples folder).

import wx

class MainFrame(wx.Frame):
 """Class with the GUI and GUI functions"""
 def __init__(self, parent,id):
 """Displays the frame, creates the GUI"""
 wx.Frame.__init__(self, parent,id, "Draw Line Example",
 size=(288,192), style=wx.CAPTION | wx.CLOSE_BOX)
 sizer= wx.BoxSizer(wx.VERTICAL)
 self.SetSizer(sizer)
 panel= Panel(self)
 sizer.Add(panel, 1, wx.EXPAND)
 self.Layout()

class Panel(wx.Panel):
 """Class with the main panel and its functions"""
 def __init__(self, parent):
 """Defines bindings and sets the panel up"""
 super(Panel, self).__init__(parent) #super the panel
 self.Bind(wx.EVT_PAINT, self.OnPaint)

 def OnPaint(self, event):
 """Is called with EVT_PAINT, draws a line"""
 self.dc = wx.PaintDC(self) #Creates the wxPaintDC
 self.dc.Clear() #Clears (to white) the wxPaintDC
 self.dc.DrawLine(5, 5, 100, 5) #Draws a line from (5,5) to (100,5)

if __name__=='__main__':
 """Displays the GUI and starts the GUI Loop"""
 app = wx.PySimpleApp()
 frame = MainFrame(parent=None, id=-1)
 frame.Show()
 app.MainLoop()

Here's the result of the above code on Ubuntu 11.04:

 The line from coordinates (5, 5) to (100, 5) is
easily noticeable and the code is quite simple.

You can also notice that the frame cannot be maximized, minimized nor resized because I set it
to be like that in the code:

 style=wx.CAPTION | wx.CLOSE_BOX

Timers and Games
In most games we have to keep redrawing the screen so that is always updated. The faster it
redraws itself, the better, but this also consumes more CPU. So if you think about most modern
games you don't even notice that the frame is actually being redrawn, unless if you have high
latency (online games) or a slow computer. However, in perfect conditions it has to look
natural, just like in real life.

In order to do this we need to have a function that is called many times per second and that
draws everything on the screen. wxPython provides us an object that is very useful for this,
wxTimer.

Since I think it's easier to learn from code than from text here's an example of a line that will go
left until it hits the border and when it hits the border goes left.

The following code might be harder to understand than the previous one so look over it line by
line and read the comments. The file is called “MovingLine.py”.

import wx

class MainFrame(wx.Frame):
 """Class with the GUI and GUI functions"""
 def __init__(self, parent,id):
 """Displays the frame, creates the GUI"""
 wx.Frame.__init__(self, parent,id, "Draw Line Example",
 size=(300,200), style=wx.CAPTION | wx.CLOSE_BOX)
 sizer= wx.BoxSizer(wx.VERTICAL)
 self.SetSizer(sizer)
 panel= Panel(self)
 sizer.Add(panel, 1, wx.EXPAND)
 self.Layout()

class Panel(wx.Panel):
 """Class with the main panel and its functions"""
 line_x = 1 #X position of line
 going_left = False
 going_right = True #The line goes to the right first

 def __init__(self, parent):
 """Defines bindings and sets the panel up"""
 super(Panel, self).__init__(parent) #super the panel
 self.Bind(wx.EVT_PAINT, self.OnPaint)

 #Create the timer
 self.timer = wx.Timer(self)
 self.Bind(wx.EVT_TIMER, self.Update, self.timer)
 self.timer.Start(50) #Updates Every 50 milliseconds

 def Update(self, event):
 """Update function, always being called"""
 self.dc.Clear() #Clear dc
 self.dc.DrawLine(self.line_x, 0, self.line_x, 200) #Draw line

 #Check if it reached the parent's size width
 #Or if it hit the left border
 if self.line_x == self.GetParent().GetSize()[0] or self.line_x==0:
 #Reverse directions
 self.going_left = not self.going_left
 self.going_right = not self.going_right
 if self.going_left:
 self.line_x -= 1 #Go to the left
 else:
 self.line_x += 1 #Go to the right

 def OnPaint(self, event):
 """Is called with EVT_PAINT, draws a line"""
 self.dc = wx.PaintDC(self) #Creates the wxPaintDC
 self.dc.Clear() #Clears (to white) the wxPaintDC

if __name__=='__main__':
 """Displays the GUI and starts the GUI Loop"""
 app = wx.PySimpleApp()
 frame = MainFrame(parent=None, id=-1)
 frame.Show()
 app.MainLoop()

I recommend that you use the file “MovingLine.py” instead of copying from this file.

The line will move right until it hits the border and when it does it moves left until it hits the
border). There is a timer associated with the function Update that makes it possible to redraw
the frame every 50 milliseconds to make it look natural (you can change this number).

“Falling Blocks” - An example

My first wxPython game was “Falling Blocks”, a very simple game where you use the arrow
keys to avoid being hit from blocks falling from the sky. It features highscores and colours. The
code is not very well-commented but I think it is fairly understandable. From now on, feel free
to explore the wxPaintDC and wxPython in order to develop more games or if you didn't like
wxPython, feel free to use pyGame or another language for game development.

import wx
import random
import time

class MainFrame(wx.Frame):
 """Class with the GUI and GUI functions"""
 def __init__(self, parent,id):
 """Displays the frame, creates the GUI"""
 wx.Frame.__init__(self, parent,id, "Falling Blocks",
size=(288,192),
 style=wx.CAPTION | wx.CLOSE_BOX)
 sizer= wx.BoxSizer(wx.VERTICAL)
 self.SetSizer(sizer)
 panel= Panel(self)
 sizer.Add(panel, 1, wx.EXPAND)
 self.Layout()

class Panel(wx.Panel):
 """Class with the main panel and its functions"""

 def initVariables(self):
 """Starts the variables at the title screen"""
 self.x = 128 #Player starts in the middle
 self.score = 0
 self.blocks = []

 #Following variables tell us at what screen the user is
 self.onTitleScreen = True #Game starts at title screen
 self.onGame = False
 self.onGameOver = False

 #Get Highscore
 try:
 f = open("data", "r")
 self.highScore = int(f.read()[2:], 2)
 f.close()
 except IOError: #In case file doesn't exist
 f = open("data", "w")
 f.write("0b00")
 f.close()
 self.highScore = 0

 #Initialize Constants
 y = 176

 #The game works on a grid, so there is a limited number of positions
 possibleLocations = [0, 16, 32, 48, 64, 80, 96, 112, 128, 144, 160,
176,
 192, 208, 224, 240, 256, 272]

 def __init__(self, parent):
 super(Panel, self).__init__(parent)
 self.Bind(wx.EVT_KEY_DOWN, self.OnKeyDown)
 self.Bind(wx.EVT_PAINT, self.OnPaint)

 self.initVariables()

 #Set the timer
 self.timer = wx.Timer(self)
 self.Bind(wx.EVT_TIMER, self.Update, self.timer)
 self.timer.Start(50)

 def Update(self, event):
 if self.onGame:
 if random.randint(0,3) == 1:
 #Add random blocks in random location
 self.blocks.append([random.choice(self.possibleLocations),
0])
 if self.score>20: #Keep the beginning of the game fairly easy.
 if random.randint(0,3) == 1:
 self.blocks.append([self.x, 0]) #Add new blocks above
user
 for i in self.blocks:
 if i[0] == self.x and (i[1] == 160 or i[1] == 176):
 self.onGame = False
 self.onGameOver = True
 break
 i[1] = i[1] + 16 #Move blocks down

 #Remove blocks below border from the list to keep game
fast.
 if i[1] == 192:
 self.blocks.pop(self.blocks.index(i))

 #Update Score and HighScore
 self.score+=1
 if self.score>self.highScore:
 self.highScore = self.score
 if self.onTitleScreen:
 #To keep the text clean
 self.dc.Clear()

 self.Paint()

 def OnKeyDown(self, event):
 """Handles key presses"""
 keyCode = event.GetKeyCode()
 if self.onGame:
 #Go to the right

 if keyCode == wx.WXK_RIGHT and self.x != 272:
 self.x = self.x + 16
 #Go to the left
 elif keyCode == wx.WXK_LEFT and self.x != 0:
 self.x = self.x - 16
 elif self.onTitleScreen:
 #Start the game
 self.onTitleScreen = False
 self.onGame = True
 time.sleep(0.5)
 else:
 #If on gameOver screen wait a bit and go to title screen again
 time.sleep(2)
 self.initVariables()
 if keyCode == wx.WXK_ESCAPE: #Close the game
 self.Destroy()
 self.Paint() #Repaint
 event.Skip()

 def Paint(self):
 """Redraws the game"""
 if self.onGame:
 self.dc.Clear()
 self.dc.SetFont(wx.NORMAL_FONT)
 self.dc.DrawText(str(self.score), 0, 0)
 self.dc.DrawText(str(self.highScore), 0, 15)

 self.dc.SetBrush(wx.WHITE_BRUSH)
 self.dc.DrawRectangle(self.x, self.y, 16, 16)

 for i in self.blocks:
 if i[1] >= 128:
 self.dc.SetBrush(wx.RED_BRUSH)
 self.dc.DrawRectangle(i[0], i[1], 16, 16)
 else:
 self.dc.SetBrush(wx.GREEN_BRUSH)
 self.dc.DrawRectangle(i[0], i[1], 16, 16)
 elif self.onTitleScreen:
 self.dc.SetFont(wx.Font(14, wx.SWISS, wx.NORMAL, wx.BOLD))
 self.dc.DrawText("Falling Blocks", 65, 30)
 else:
 self.dc.Clear()
 self.dc.SetFont(wx.Font(14, wx.SWISS, wx.NORMAL, wx.BOLD))
 self.dc.DrawText("GAME OVER", 2, 2)

 self.dc.SetFont(wx.NORMAL_FONT)
 self.dc.DrawText("%s %d" % ("Score: ", self.score), 2, 25)
 self.dc.DrawText("%s %d" % ("Highscore: ", self.highScore), 2,
40)

 #Save the highscore
 f = open("data", "w")
 f.write(bin(self.highScore))
 f.close()

 def OnPaint(self, event):
 """First called with EVT_PAINT"""
 self.dc = wx.PaintDC(self)
 self.dc.Clear()
 self.Paint()

if __name__=='__main__':
 """Displays the GUI and starts the GUI Loop"""
 app = wx.PySimpleApp()
 frame = MainFrame(parent=None, id=-1)
 frame.Show()
 app.MainLoop()

Conclusion
Now that you have learned the basics of developing games with wxPython, feel free to start
coding more complex things. Check the wxPython.org's website for more information on all the
widgets and reread this if you forgot about the basics.

Contact
If you have any comments to make on the tutorial, any ideas, or you find any bug you can
contact me on IRC:

ephan on irc.freenode.net

